• 제목/요약/키워드: Mining Data

검색결과 4,045건 처리시간 0.029초

Feature Selection Methodology in Quality Data Mining

  • Soo, Nam-Ho;Halim, Yulius
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 2004년도 춘계공동학술대회 논문집
    • /
    • pp.698-701
    • /
    • 2004
  • In many literatures, data mining has been used as a utilization of data warehouse and data collection. The biggest utilizations of data mining are for marketing and researches. This is solely because of the data available for this field is usually in large amount. The usability of the data mining is expandable also to the production process. While the object of research of the data mining in marketing is the customers and products, data mining in the production field is object to the so called 4MlE, man, machine, materials, method (recipe) and environment. All of the elements are important to the production process which determines the quality of the product. Because the final aim of the data mining in production field is the quality of the production, this data mining is commonly recognized as quality data mining. As the variables researched in quality data mining can be hundreds or more, it could take a long time to reveal the information from the data warehouse. Feature selection methodology is proposed to help the research take the best performance in a relatively short time. The usage of available simple statistical tools in this method can help the speed of the mining.

  • PDF

From Multimedia Data Mining to Multimedia Big Data Mining

  • Constantin, Gradinaru Bogdanel;Mirela, Danubianu;Luminita, Barila Adina
    • International Journal of Computer Science & Network Security
    • /
    • 제22권11호
    • /
    • pp.381-389
    • /
    • 2022
  • With the collection of huge volumes of text, image, audio, video or combinations of these, in a word multimedia data, the need to explore them in order to discover possible new, unexpected and possibly valuable information for decision making was born. Starting from the already existing data mining, but not as its extension, multimedia mining appeared as a distinct field with increased complexity and many characteristic aspects. Later, the concept of big data was extended to multimedia, resulting in multimedia big data, which in turn attracted the multimedia big data mining process. This paper aims to survey multimedia data mining, starting from the general concept and following the transition from multimedia data mining to multimedia big data mining, through an up-to-date synthesis of works in the field, which is a novelty, from our best of knowledge.

웹 컨텐츠의 분류를 위한 텍스트마이닝과 데이터마이닝의 통합 방법 연구 (Interplay of Text Mining and Data Mining for Classifying Web Contents)

  • 최윤정;박승수
    • 인지과학
    • /
    • 제13권3호
    • /
    • pp.33-46
    • /
    • 2002
  • 최근 인터넷에는 기존의 데이터베이스 형태가 아닌 일정한 구조를 가지지 않았지만 상당한 잠재적 가치를 지니고 있는 텍스트 데이터들이 많이 생성되고 있다. 고객창구로서 활용되는 게시판이나 이메일, 검색엔진이 초기 수집한 데이터 둥은 이러한 비구조적 데이터의 좋은 예이다. 이러한 텍스트 문서의 분류를 위하여 각종 텍스트마이닝 도구가 개발되고 있으나, 이들은 대개 단순한 통계적 방법에 기반하고 있기 때문에 정확성이 떨어지고 좀 더 다양한 데이터마이닝 기법을 활용할 수 있는 방법이 요구되고 있다. 그러나, 정형화된 입력 데이터를 요구하는 데이터마이닝 기법을 텍스트에 직접 적용하기에는 많은 어려움이 있다. 본 연구에서는 이러한 문제를 해결하기 위하여 전처리 과정에서 텍스트마이닝을 수행하고 정제된 중간결과를 데이터마이닝으로 처리하여 텍스트마이닝에 피드백 시켜 정확성을 높이는 방법을 제안하고 구현하여 보았다. 그리고, 그 타당성을 검증하기 위하여 유해사이트의 웹 컨텐츠를 분류해내는 작업에 적용하여 보고 그 결과를 분석하여 보았다. 분석 결과, 제안방법은 기존의 텍스트마이닝만을 적용할 때에 비하여 오류율을 현저하게 줄일 수 있었다.

  • PDF

하이브리드 데이터마이닝 메커니즘에 기반한 전문가 지식 추출 (Extraction of Expert Knowledge Based on Hybrid Data Mining Mechanism)

  • 김진성
    • 한국지능시스템학회논문지
    • /
    • 제14권6호
    • /
    • pp.764-770
    • /
    • 2004
  • This paper presents a hybrid data mining mechanism to extract expert knowledge from historical data and extend expert systems' reasoning capabilities by using fuzzy neural network (FNN)-based learning & rule extraction algorithm. Our hybrid data mining mechanism is based on association rule extraction mechanism, FNN learning and fuzzy rule extraction algorithm. Most of traditional data mining mechanisms are depended ()n association rule extraction algorithm. However, the basic association rule-based data mining systems has not the learning ability. Therefore, there is a problem to extend the knowledge base adaptively. In addition, sequential patterns of association rules can`t represent the complicate fuzzy logic in real-world. To resolve these problems, we suggest the hybrid data mining mechanism based on association rule-based data mining, FNN learning and fuzzy rule extraction algorithm. Our hybrid data mining mechanism is consisted of four phases. First, we use general association rule mining mechanism to develop an initial rule base. Then, in the second phase, we adopt the FNN learning algorithm to extract the hidden relationships or patterns embedded in the historical data. Third, after the learning of FNN, the fuzzy rule extraction algorithm will be used to extract the implicit knowledge from the FNN. Fourth, we will combine the association rules (initial rule base) and fuzzy rules. Implementation results show that the hybrid data mining mechanism can reflect both association rule-based knowledge extraction and FNN-based knowledge extension.

Data mining and Copyright

  • Kim, Kyungsuk
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제14권4호
    • /
    • pp.11-19
    • /
    • 2022
  • Data mining has broad applications that reach beyond scholarly and scientific research and provide internet search engine services that are commonly used forms of Text and Data Mining('TDM') of websites. The exceptions and limitations for data mining provide a competitive advantage in the global race for policy innovation because it permits researchers to conduct computational analysis - TDM on any materials to which they have access. For this purpose, Japan and the EU added limitations on copyright to legalize some TDM research through amendments to copyright law, and the U.S. copyright law has allowed data mining by the fair use provision. On the other hand, there are no explicit exceptions and limitations for data mining under the Korean Copyright Act, and there are no cases considering data mining fair use. We review comparatively exceptions and limitations on copyright which will help to encourage AI-related business by using more data smoothly through the mining process and extracting more valuable information.

Data Mining for High Dimensional Data in Drug Discovery and Development

  • Lee, Kwan R.;Park, Daniel C.;Lin, Xiwu;Eslava, Sergio
    • Genomics & Informatics
    • /
    • 제1권2호
    • /
    • pp.65-74
    • /
    • 2003
  • Data mining differs primarily from traditional data analysis on an important dimension, namely the scale of the data. That is the reason why not only statistical but also computer science principles are needed to extract information from large data sets. In this paper we briefly review data mining, its characteristics, typical data mining algorithms, and potential and ongoing applications of data mining at biopharmaceutical industries. The distinguishing characteristics of data mining lie in its understandability, scalability, its problem driven nature, and its analysis of retrospective or observational data in contrast to experimentally designed data. At a high level one can identify three types of problems for which data mining is useful: description, prediction and search. Brief review of data mining algorithms include decision trees and rules, nonlinear classification methods, memory-based methods, model-based clustering, and graphical dependency models. Application areas covered are discovery compound libraries, clinical trial and disease management data, genomics and proteomics, structural databases for candidate drug compounds, and other applications of pharmaceutical relevance.

Encoding of XML Elements for Mining Association Rules

  • Hu Gongzhu;Liu Yan;Huang Qiong
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제14권3호
    • /
    • pp.37-47
    • /
    • 2005
  • Mining of association rules is to find associations among data items that appear together in some transactions or business activities. As of today, algorithms for association rule mining, as well as for other data mining tasks, are mostly applied to relational databases. As XML being adopted as the universal format for data storage and exchange, mining associations from XML data becomes an area of attention for researchers and developers. The challenge is that the semi-structured data format in XML is not directly suitable for traditional data mining algorithms and tools. In this paper we present an encoding method to encode XML tree-nodes. This method is used to store the XML data in Value Table and Transaction Table that can be easily accessed via indexing. The hierarchical relationship in the original XML tree structure is embedded in the encoding. We applied this method to association rules mining of XML data that may have missing data.

  • PDF

S-PLUS와 StatServer를 이용한 Data Mining 도구 개발 (Development of Data Mining Tool Using S-PLUS and StatServer)

  • 정인석;이재준
    • 지능정보연구
    • /
    • 제4권2호
    • /
    • pp.129-139
    • /
    • 1998
  • 통계 software에는 data mining에 필요한 다양한 모형과 함수들이 제공되고 있어 이를 이용한 data mining 도구가 소개되고 있다. 본 논문에서는 data mining을 수행하는데 효과적인 환경을 제공하는 S-Plus로 data mining 기법들을 구현하거나 재구성하였으며, StatServer를 이용하여 대용량의 data base를 직접 관리할 수 있게 하고, S-PLUS의 분석기능을 Internet을 통하여 사용할 수 있게 하여 원거리에서 data mining작업을 수행될 수 있도록 구성하였다. 또한 분석자는 찾아낸 모형을 복잡한 프로그래밍 작업 없이 새로운 웹 페이지를 만들 수 있으며, 이를 통해 운영계의 사용자가 최적 모형이 제시하는 결과를 실제 업무에 즉시 이용할 수 있도록 하였다.

  • PDF

목표 속성을 고려한 연관규칙과 분류 기법 (Directed Association Rules Mining and Classification)

  • 한경록;김재련
    • 산업경영시스템학회지
    • /
    • 제24권63호
    • /
    • pp.23-31
    • /
    • 2001
  • Data mining can be either directed or undirected. One way of thinking about it is that we use undirected data mining to recognize relationship in the data and directed data mining to explain those relationships once they have been found. Several data mining techniques have received considerable research attention. In this paper, we propose an algorithm for discovering association rules as directed data mining and applying them to classification. In the first phase, we find frequent closed itemsets and association rules. After this phase, we construct the decision trees using discovered association rules. The algorithm can be applicable to customer relationship management.

  • PDF

전략중심의 CRM구조의 데이터마이닝 (Data Mining for Strategy focused CRM Structure)

  • 윤용운
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회 2004년도 추계학술대회 및 정기총회
    • /
    • pp.399-405
    • /
    • 2004
  • With the explosive growth of information sources available under various information technology and business environment, it has become increasingly necessary for determining effective marketing strategies and optimizing the logical structure of the CRM data mining system. In this paper, we present an overview of the data mining for strategy focused CRM structure. This includes preprocessing, transaction identification and data integration components. We describe the main part of this paper to the discussion of processes and problems that characterize the mining tools and techniques, identify the CRM data mining, and provide a general architecture of a system to do focused CRM data mining that require further research and development.

  • PDF