Minireview

Genomics & Informatics Vol. 1(2) 65-74, December 2003

Data Mining for High Dimensional Data in Drug

Discovery and Development

Kwan R. Lee*, Daniel C. Park, Xiwu Lin and Sergio
Eslava

GlaxoSmithKline, Research & Development, Data Exploration
Sciences 1250 South Collegeville Road Collegeville, PA 19426,
USA

Abstract

Data mining differs primarily from traditional data analysis
on an important dimension, namely the scale of the data.
That is the reason why not only statistical but also computer
science principles are needed to extract information from
large data sets. In this paper we briefly review data mining,
its characteristics, typical data mining algorithms, and
potential and ongoing applications of data mining at
biopharmaceutical industries. The distinguishing
characteristics of data mining lie in its understandability,
scalability, its problem driven nature, and its analysis of
retrospective or observational data in contrast to
experimentally designed data. At a high level one can
identify three types of problems for which data mining is
useful: description, prediction and search. Brief review of
data mining algorithms include decision trees and rules,
nonlinear classification methods, memory-based methods,
model-based clustering, and graphical dependency models.
Application areas covered are discovery compound
libraries, clinical trial and disease management data,
genomics and proteomics, structural databases for
candidate drug compounds, and other applications of
pharmaceutical relevance.
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Introduction

Data mining has generated significant interest recently,
both in industry at large and in research laboratories and
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academia. What exactly is “data mining”? Unfortunately
there is no precise answer. Loosely it can be described as
the application of statistical and computer science
principles to the problem of extracting information from
large data sets. A key point is that neither statistics on its
own, nor computer science on its own, are sufficient (for
typical applications) as the sole basis for data mining.
Rather, statistics provides the component of a data mining
algorithm, which takes care of the details of how one fits
parameters and models to data. There is a vast body of
work in statistics on parameter and model estimation which
can be (and often is) leveraged to good effect in data
mining. The computer science component of a data mining
algorithm handles the storage and access of information in
an efficient manner and the heuristic (search) component
of the parameter and model-fitting algorithm. Again, there
is a vast store of techniques for optimization and search
that can be leveraged.

A good example of the interplay between computer
science and statistics is data mining using rule induction.
The idea is to find rules of the form, “If A=a and B=b then
C=c" with high probability from the data. Clearly one needs
statistical methods to determine reliably (with some
statistical confidence) which rules are worthwhile and
which are noisy (it will be a function of how often the left-
hand side of the rule occurs and how accurate it is). But a
statistical quality measure for rules is almost useless on its
own for this problem since there are so many possible
rules to search over (if we are searching for rules relating K
variables of interest). In fact the search space explodes in a
combinatorial fashion with K, so it is critical that we have an
efficient search method to prevent the enumeration of all
possible patterns. Typical search methods used for this
problem would be “branch and bound” where one can
bound the quality of the solution in large parts of the search
space (without actually searching there) and ignore low
quality regions in this manner. The key point here is that it
is the marriage of statistical and computer science
techniques that allows this problem to be solved. There are
many such rule induction algorithms available in the market
and in the research literature. Those that rely only on
statistical methods, or only on computer science methods,
have been found to be inferior in performance to those
algorithms that take advantage of methods from both
fields. ,

In this paper we will review data mining, its
characteristics, typical data mining algorithms, and
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potential applications of data mining at biopharmaceutical
industries. This paper is intended to be a brief overview of
the field: for more in-depth discussions the reader is
directed towards the collections of papers (Piatetsky-
Shapiro G. et al., 1991 and Fayyad U.M. et al., 1996),
edited Proceedings of the International Conferences on
Knowledge Discovery and Data Mining (Fayyad UM. et al.,
1995 and Simoudis E. et al., 1996). Useful overviews are
contained in the papers (Decker K.M. et al. ,1995, Mannila
H., 1996, Glymour C. et al., 1996, Elder J. et al., 1996, and
Fayyad U.M. et al., 1996). Chatfield C. presents the more
traditional statistical viewpoint on data mining. Recently
Friedman et al. gave a general review on data mining
opportunities for statisticians working in biopharmaceutical
industries which is complementary to our presentation
here.

Finally, the reader should be aware of the excellent
resources available on the World Wide Web in relation to
data mining. The website at www.kdd.gte.com is an
excellent resource for general information on data mining,
technical reports, and pointers to many publicly available
software systems. The website at www.kdnuggets.com is
also another useful site on data mining.

Why do we need data mining?

Traditional methods of turning data into useful information
rely heavily on manual analysis and interpretation. Let us
consider two examples. In the first example, planetary
geologists at NASA have been collecting images of the
planets for decades from remote spacecraft. The images
are painstakingly examined and catalogs are compiled
which tabulate the location, size and characteristics of
various geologic features of interest (such as craters,
volcanoes, etc.). In the last few years the volume of
available data has increased by more than 2 orders of
magnitudes. For example, for the planet Venus, the
Magellan spacecraft returned more than 30,000 one-
megabyte images, far more than all previous planetary
missions combined. Planetary geologists are swamped
with data and are cataloging only certain fractions of the
planet or generating low-resolution catalogs (ignoring the
high-resolution data).

The second example involves the health-care industry.
Specialists analyze current trends and changes in
healthcare data on a quarterly basis. The specialists then
provide a report detailing the analysis to the sponsoring
healthcare organization and this report is used as the basis
for future decision-making and planning for health-care
management. The problem is that as more detailed data is
collected routinely on each patient, more and more
specialists are needed to analyze the data and a potentially

important fraction of significant patterns are being missed.

There are many, many other fields where similar data
analyzes are carried out and where only a fraction of the
data can be examined. For these types of problems,
manual probing of a data set can be slow, inefficient,
expensive, and highly subjective. This type of manual data
analysis is becoming completely impractical in many
domains as data volumes grow exponentially. Who could
be expected to digest millions of data points, each having
potentially thousands of fields? Much of the current interest
in data mining is very much problem-driven with users in a
diverse set of business, science, medicine, engineering,
and government communities demanding new ways to
navigate and understand large data sets.

Characteristics of data mining

We have said earlier that it is difficult to precisely define
data mining in a manner that makes it distinct from its
“parent” disciplines of statistics and computer science.
However, we can identify some specific characteristics of
data mining which are relatively unique to the field:

Understandable models

The fundamental goal of data mining is to extract
information (or “knowledge”) from data. In this context, it is
critical that the patierns and models produced by a data
mining algorithm are understandable to the user. Thus, for
example, data mining algorithms tend to focus on models
and patterns that can be expressed easily (perhaps
visually) to the human user, such as rules, trees, graphs,
and clusters in data space. In contrast, models composed
of non-linear equations (such as nonlinear regression or
neural networks) are relatively difficult to interpret and tend
not to be used in data mining systems. It is important here
to note the importance of goals. If one’s goal is to build a
black box which is the most accurate model possible, then
understandability of the black box may be irrelevant.
However, as in data mining, one may be more interested in
the qualitative structure of the model and would prefer an
understandable model that is reasonably accurate over an
incomprehensible one which is slightly more accurate.

Scalability to large problems

One of the key features of many (but not all) data mining
applications is the sheer size of the data sets being used.
Size can largely be measured in 2 dimensions (at least for
“flat file” data sets): the number of variables (say K) and the
number of data points or samples (say N). The number of
variables K can be in the thousands, or even tens of
thousands For example, a database on Alzheimer's
patients at UC Irvine contains about one thousand



Data mining for High Dimensional Data in Drug Discovery and Development 67

variables measured per patient including variables such as
age, employment status, questionnaire responses,
cognitive test responses, and physical test results. Having
to analyze data with 1000 variables is beyond the scope of
many standard statistical techniques. Furthermore, this
many variables make it largely impossible for a human to
explore the data (e.g., visualizing it) in any meaningful
manner. Thus, data mining algorithms typically are
designed “upfront” to handle very large numbers of
variables, and are often well-suited to the problem of
finding low-dimensional structure in high-dimensional
problems. The other aspect of size, the humber of data
points N, can also challenge conventional data analysis
methods. It is not unusual to hear of data sets where N is in
the billions for science applications for example. Clearly
conventional algorithms and software simply can not
handle data on this scale. Again, data mining focuses on
specific solutions to large N problems: solutions such as
sub-sampling, problem decomposition for parallel
computing, etc., are being actively explored and applied.

Problem driven nature

Data mining is a field that is driven by practical problems,
specifically the problem faced by many organizations of
having data sets that are too large to explore manually. In
this sense, it is an applications-oriented field, rather than a
theory-driven field. (As an example, many of the most well-
known researchers in the field work in applied research at
industry labs rather than in academia). The impact of this is
that data mining is more fragmented and uses fewer
common formalisms (e.g., for describing algorithms) than
other fields. Data mining borrows technigues liberally from
statistics, database theory, artificial intelligence, operations
research, elc., and focuses on the practical problem of how
these techniques can be integrated and applied to
particular problems. Thus, there is relatively little
fundamental research going on in the field: research ideas
are borrowed and “cannibalized” from other areas.
Nonetheless there are some fundamental theoretical
problems that are relatively unique to data mining: for
example, controlling the interaction of search and statistical
significance. Overall, however, the field is characterized by
a focus on solving practical problems in specific domains.

Retrospective data analysis

Unlike statistics, data mining typically analyzes data in a
retrospective fashion. Rather than designing an experi-
ment, collecting data, and then testing a hypothesis (as in
statistics), data mining is usually applied to problems where
the data has been collected in the past or in some manner
that is outside the control of data analyst. In this sense,
data mining can not replace designed experiments/analy-

sis: this is where traditional statistics must be applied. In
fact, one can view data mining and statistics as being
complementary to each other in this regard: patterns found
during data mining may need to be confirmed by more
traditional designed experiments (if possible) at a later
stage.

In this context, data mining has much in common with
exploratory data analysis techniques in statistics. Rather
than approaching a data set with a predefined set of
hypotheses, one “lets the data speak” and considers a
large number of possible models and methods for
representing structure in the data. Clearly this requires
some discipline in order to prevent fitting noise in the data.
Such overfitting was termed “data-dredging” or “data
fishing” in statistics in the 1960’s. The more modern view is
that as long as certain precautions are taken {(such as
cross-validated sampling methods to test for generality), it
is possible to reliably find structure in data without having
strong a priori hypotheses on what expects to find. This of
course is the “holy grail” of data mining: finding unexpected
and valuable “nuggets” of knowledge.

Local patterns and global models

Another feature of data mining algorithms (as implemented
today) is that they often produce lists of patterns of the form
“if X increases Z also increases” as the output of the
algorithm. This is in contrast to a fully specified model for
the data, which in this case might be Z = aX + bY where X,
Y, and Z are variables and a and b are parameters of the
model. The advantage of searching for local patterns is that
they can be more robust than full modeling. In the above
example the model must assume a linear form while the
pattern is much more non-committal. Thus, pattern-finding
can be very useful for suggesting structure in low-level data
without having to make any strong model assumptions.
However, the downside is that the process of finding
pattems is not as well-founded from a statistical viewpoint,
and furthermore, the sets of patterns produced by many
data mining algorithms can be redundant, dependent, and
very difficult to understand. Nonetheless, pattern-based
data mining is a useful addition to the conventional reper-
toire of exploratory data analysis techniques.

Non-standard data types

Measurements on variables can be real-valued (continu-
ous), integer-valued {discrete), categorical (names), and so
forth. In addition one can also have richer data types such
as text, sequences and time series, audio, images, video,
etc. Traditional methods (such as much of statistics) often
deal with only one fixed data type such as real-valued data.
In practice, however, there is an increasing number of
practical applications where the data is naturally
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represented across several different data types. For
example, in medicine, a patient may have real-valued
variables describing blood pressure, categorical variables
such as ethnicity and sex, free text containing comments
written by specialists during a consultation, recordings of
biomedical monitoring over time, and diagnostic images.
Furthermore, any of these data types may be annotated
with physician diagnoses (perhaps multiple diagnoses over
time). How can one handle, integrate, and model data from
vastly different sources? As yet, there are relatively few
techniques for handling such non-standard heterogeneous
data sources. However, these data sets are the type of
data to which data mining is being applied and for which
more conventional analysis methods do not exist.

What can one do with data mining?

At a high level one can identify three types of problems that
data mining is useful for, namely: description, prediction,
and “retrieval by content.” This 3-way separation is not
perfect (there is a fair degree of overlapping between these
types of problems) but nonetheless the breakdown helps to
clarify the main application areas to which data mining is
applied.

Description means that one is interested in the
extraction and an understanding of one’s data, e.g., the
structure of how the variables in one’s database relate to
each other. Which variables are directly dependent on
which other variables? Which variables are relatively
independent? Which variables can be grouped together? Is
there an understandable model that can effectively
simulate or generate the data we have? These types of
questions are typically answered by a variety of techniques
in exploratory data analysis known as clustering,
dependency analysis, density estimation and so forth. The
key point here is that the information extracted by the
model is intended to be presented and interpreted by a
human user. This is probably the main application of data
mining today since it directly addresses the problem of
finding interpretable information in large data sets.

Prediction is the process of building a model which can be
used for generating future predictions for some variable of
interest whose value is unknown, e.g., predicting the value of
the stock market tomorrow given today’s economic
indicators, or classifying a patient as having a particular
disease or not based on a set of diagnostic test results. This
is the traditional domain of statisticai methods, e.g.,
regression, discrimination, and so forth. The emphasis here
is usually on the performance of the model (how well does it
predict?) rather than on understanding the data or the
model. Thus, predictive modeling could be viewed as
somewhat ancillary to much of data mining since a predictive

model need not provide the user with any insight into the
data-generating process (but it can still be very useful).

In practice the interplay between predictive and
descriptive modeling is quite close. In most predictive
modeling applications, there is usually a desire on the part
of the user to understand how the model works and why it
works at all. Conversely, in descriptive modeling there is
also the element of predictive accuracy in the sense that
one can evaluate a descriptive model in terms of how well
it would describe unseen data. For large-scale practical
problems with many variables, descriptive modeling may
be used to gain insight into the structure of the problem
and to guide the user in the model selection process before
a predictive model is applied.

The final primary category of data mining applications is
“retrieval by content.” This is best described by an
example. A neurologist examines Magnetic Resonance
Images (MRIs) looking for reductions in hippocampal
volume that may indicate the onset of Alzheimer’s disease.
He/she may have access to MRIs from thousands of
patients, a large database of MRIs that is impossible to
search or annotate manually. The neurologist finds an
interestingly looking visual pattern in the hippocampal
region of one particular patient. What he/she would like to
do is then to explore the database for other similar
patterns: “find me the 10 patterns which look most like this”
or “find me the 10 patients which have patterns like this
and similar cognitive test scores”. For such image data
{(and other “non-standard” data types) it is very difficult to
translate the human-level notion of similarity into
algorithmic constraints. The relevant questions in such
problems are how can one define notions of pattern
similarity and how can one efficiently and effectively
organize the search to find patterns of interest. Data mining
systems for this problem can be constructed either by
building models for the domain or by applying appropriate
distance metrics to the raw data.

There are a variety of other data mining applications
which do not naturally fall under the above categories,
including “change detection” (detecting whether changes in
data have occurred over time) and detecting unusual
patterns (such as detecting fraud).

An outline of some popular
data mining algorithms

Naturally there are some data mining algorithms which
have been found useful across a broad variety of prob-
lems. In this section we provide a very brief overview of
some of these algorithms.
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Decision Trees and Rules

Decision trees and rules have a simple representational
form, making the inferred model relatively easy to
comprehend by the user. However, the restriction to a
particular tree or rule representation can significantly
restrict the functional form (and thus the approximation
power) of the model. If one enlarges the model space to
allow more general expressions (such as multivariate
hyperplanes at arbitrary angles), then the model is more
powerful for prediction but may be much more difficult to
comprehend. There are a large number of decision trees
and rule induction algorithms described in the machine
learning and applied statistics literature (Quinlan J.R.,
1993, Breiman L. et al., 1984, and Michie D. et al., 1994).
To a large extent they are all based on likelihood-based
model evaluation methods with varying degrees of
sophistication in terms of penalizing model complexity.
Greedy search methods, which involve growing and
pruning rule and tree structures, are typically employed to
explore the super-exponential space of possible models.
Trees and rules are primarily used for predictive modeling,
both for classification and regression, although they can
also be applied to descriptive pattern generation. A popular
application of rule learning techniques in data mining is that
of “association rules” (Agrawal R. et al., 1995 and Mannila
H. et al., 1996) which look for patterns of the form “if A and
B occur then C also occurs”, etc. Most tree and rule
learning algorithms are predictive rather than descriptive:
see Smyth P. et al. for a description of how descriptive
rules can be learned from data.

Nonlinear Regression and
Classification Methods

These methods consist of a family of techniques for
prediction that fit linear and non-linear combinations of
basis functions (sigmoids, splines, and polynomials) to
combinations of the input variables. Examples include
feedforward neural networks, adaptive spline methods,
projection pursuit regression, and so forth. Consider neural
networks, for example. In terms of model evaluation, while
networks of the appropriate size can universally
approximate any smooth function to any desired degree of
accuracy, relatively little is known about the representation
properties of fixed size networks estimated from finite data
sets. In terms of model evaluation, the standard squared
eror and cross entropy loss functions used to train neural
networks can be viewed as log-likelihood functions for
regression and classification respectively. The backpropa-
gation technique corresponds to a parameter search

method that performs gradient descent in parameter space
to find a local maximum of the likelihood function starting
from random initial conditions. Given the approximation

power of the underlying non-linear model, nonlinear
regression methods often provide excellent predictors from
data for both classification and regression functions:
conversely, however, these models can be very difficult to
interpret and, consequently, have found limited application
in data mining applications.

Memory-based Methods

The representation is simple: use representative examples
(“memory”) from the database to approximate a model, i.e.,
predictions on new examples are derived from the
properties of “similar” examples in the model whose
prediction is known. Techniques include nearest-neighbor
classification and regression algorithms and case-based
reasoning systems. A potential disadvantage of example-
based methods (compared with tree-based methods for
example) is that a well-defined distance metric for
evaluating the distance between data points is required.
Model evaluation is usually based on cross-validation
estimates of a prediction error: “parameters” of the model
to be estimated can include the number of neighbors to
use for prediction and the distance metric itself. Like non-
linear regression methods, example-based methods are
often asymptotically quite powerful in terms of
approximation propetties, but conversely can be difficult to
interpret since the modei is implicit in the data and not
explicitly formulated. Related techniques include kernel
density estimation for descriptive modeling of joint
probability densities.

Probabilistic (Model-Based) Clustering

This is a descriptive modeling technique where one wishes
to group one’s data in some manner into “natural” groups
or clusters. Because it is difficult to formally specify what a
natural grouping is, non-probabilistic clustering algorithms
are often quite ad hoc and difficult to compare. Probabilistic
clustering on the other hand assumes that the data are
being generated by a probabilistic model, proceeds to find
the parameters of this model, and identifies the component
densities in the model as clusters. The most commonly
used representation is that of linear mixtures: the data is
assumed to have been generated by a linear combination
of M component densities, often chosen to be Gaussian.
The fit function used is maximum likelihood, and the search
is a technique from statistics known as the Expectation-
Maximization procedure which is an effective method for
finding a local likelihood maximum in parameter space with
hidden data (here the hidden data are the “labels” telling us
which data point belongs to which cluster). Determining M,
the number of clusters, is quite difficult: recent work has
shown that Bayesian and cross-validation techniques are
useful in this regard (Smyth P. et al., 1996).
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Probabilistic graphical dependency models

Graphical models consist of a graph (with a node for each
variable) where the links in the graph show the depen-
dency relations that exist in a joint probability distribution
over the variables. There are several different types of
graphical models, depending on the type of graph used
(directed, undirected, mixed) and the form of the
independence assumptions (arbitrary, Markov, etc.). One
of the most widely used examples is a (so-called) Bayesian
network (also known as belief networks): see Heckerman
D. et al. for an overview of how such networks can be
learned from data. Another well known class of graphical
models is hidden Markov models: see Smyth P. et al. for a
review of hidden Markov models within a graphical
modeling framework.

One of the primary advantages of graphical dependency
models is their understandability: a graph, where nodes
represent variables, and links represent dependencies, can
be a very clear and insightful way to visualize the structure
of a model. Graphical models are typically used with
categorical or discrete-valued variables, but extensions to
special cases, such as Gaussian densities, for real-valued
variables are also possible. Within the artificial intelligence
community these models were initially developed within the
framework of probabilistic expert systems: the structure of
the model and the parameters (the conditional probabilities
attached to the links of the graph) were elicited from
experts. More recently there has been significant work in
both the Al and statistical communities on methods
whereby both the structure and parameters of graphical
models can be learned from databases directly. Model
search can consist of greedy hill-climbing methods over
various graph structures: prior knowledge, such as a partial
ordering of the variables based on causal relations, can be
quite useful in terms of helping the model search phase.
Although stilt primarily at the research phase, graphical
model learning algorithms look quite promising for
descriptive data mining tasks.

Given the broad spectrum of data mining methods and
algorithms, this brief overview is inevitably limited in scope:
there are many data mining techniques, particularly
specialized methods for particular types of data and
domains, which were not mentioned specifically in the
discussion. Although different algorithms and applications
may appear quite different on the surface, it is not
uncommon to find that they share many common
components.,

Data mining applications in
biopharmaceutical industries

Discovery in compound library databases

Scientists in GSK drug discovery are working to build
libraries Jarge numbers of drug compounds of 100,000 or
more each. Each library contains structural and biological
activity information (for various target compounds) of
individual compounds. Important questions to ask are of
the form “what are the characteristics of the compounds
which have desirable activity for particular targets.” This
type of information is invaluable for drug design.
Traditionally so-called quantitative structure activity (QSAR)
studies have been carried out on such data but only on a
small scale (a few hundred compounds or less).
Nonetheless, on data sets of this scale, ciassical
multivariate regression/classification techniques have been
applied to this data with success and will still be valuable to
a large extent since such a study can start from the
designed experiment. However the large size of the
libraries (typically with 100 or more fields involved) are
clearly beyond the scope of traditional statistical
techniques. Data mining techniques can play a useful role
in QSAR studies. For example, rule and tree-based
methods may be able to identify low-dimensional sets of
variables that are useful for activity prediction. Such
information from exploratory data mining of QSAR data
could be fed into the next stage of the drug design perhaps
through designed experiment. An interesting application of
several data mining algorithms to high-throughput
screening data can be found in Engels M.F.M et al..

Clinical trial data/disease management/
outcomes research data

Large amounts of data are accumulated through various
stages of clinical trials of drug developments. In addition,
there are vast quantities of doctors’ prescription records
available internally and externally. Similar data can be
obtained through outcomes research. Data mining could
be used with such data to answer questions such as “what
are the characteristics of the group of people for whom a
certain drug was effective?” or “can we find a small
subgroup of people who have adverse reactions to certain
drug and characterize them?”. Such information could be
very valuable for the next stage of drug development or for
target marketing development. However there are many
more clinical and epidemiological questions which can be
asked against such patients data collected and aggre-
gated. A recent paper (Olaleye D. et al., 2001) discusses
many practical issues in the clinical data mining and Lee
K.R. et al. is about a specific application of data mining to
merged clinical trial data on type Il diabetes.
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Genomics and proteomics database

In collaboration with Human Genome Sciences (HGS),
GSK has accumulated a large number of human genome
sequences in terms of ESTs (Expressed Sequence Tags).
Exploratory data analytic techniques to make better use of
this important database will be very valuable to GSK.
Statistical methods based on hidden Markov models
(HMMs) (see Fayyad U.M. et al., 1996) are increasingly
finding applications to this type of sequence data with
significant success. However, the HMM is a model with
very restrictive independence assumptions: there is
considerable room for exploring techniques beyond the
HMM, including grammar models, local pattern
dependencies, and so forth. However the most exciting
new technology lies in functional genomics, where the
gene expressions of thousands of genes are measured
simultaneously in a single sample for cells. The DNA
microarrays, also known as “gene chips” is a new
promising technology to find genes specifically responsible
for certain diseases.

Many techniques for analyzing microarray data are
proposed with contributions from prominent statisticians
and data scientists. Some of the recent work can be found
in Hastie T. et al. and Tibshirani R. et al.. Thus far, much of
the work in DNA microarray data analysis has centered
around cluster analysis to find genetic subtyping. Further
work in this direction may be of good reason: a recent
paper (Burr T. et al., 2001) claims that model-based clus-
tering (see e.g., Banfield J. et al., 1993) has great potential
for choosing the number of subtypes in genetic data.

In addition to cluster analysis, other techniques,
including evolutionary computing as well as survival
analysis, are increasingly being used to analyze
bioinformatics data. Genetic programming, which falls
under the umbrella of evolutionary computing, has been
used to automatically generate predictors for some of the
critical properties of drug-like chemicals (Moore J.S. et al.,
2002). And recently, Beer D. et al. used survival analysis
techniques to determine whether gene-expression profiles
were associated with variability in survival times. They went
on to demonstrate a gene-expression risk profile that can
distinguish stage | lung adenocarcinomas and differentiate
prognoses. The techniques of microarray data analysis are
also applicable to other bioinformatics data, including that
of Single Nucleotide Polymorphisms (SNP) and protein
arrays.

Recently, a challenge at the CAMDAOQS3 (Critical
Assessment of Microarray Data Analysis) conference was
to propose schemes to effectively integrate information
from different microarray piatform data sets. This problem
is both extremely important and relevant to ongoing work
with microarrays, as researchers will often find that the

number of genes in common between different sets may
not be sufficient to produce conclusive results. One
possible solution is to combine data from several studies
using Q-Normalization (Lin X. et al., 2003), thereby
producing larger samples and providing more statistical
power in analyzing data. A minor drawback is that due to
differences in the design of probe sets for different
microarray chips, information may be lost when using
combined data. However, this method led to an excellent
selection of important genes associated with diseases,
which were highly consistent with prior biological findings.
Finding new and effective way of merging data remains a
continuing challenge today.

The other component of functional genomics is
proteomics. The hype and speculation surrounding gene
sequencing is now being switched to gene expression
studies and proteomics. Proteomics (PROTEin +
genOMICS) represents the effort to identify, quantify, and
determine the structure and function of proteins using
techniques such as 2D-PAGE (two-dimensional
polyacrylamide gel electrophoresis) and Mass
Spectrometry. 2D-PAGE is a procedure by which individual
proteins of a given sample are separated by isoelectric
charge in one dimension and molecular weight in the other
dimension. Mass spectrometry is a powerful analytical
technique that is used to help identify unknown
compounds, to quantify known compounds, and to
elucidate the structure and chemical properties of
molecules. The technique uses dispersion or filtering to
sort ions according to their mass-to-charge ratios or a
related property. One significant advantage of mass
spectrometry is that detection of compounds can be
accomplished with very minute quantities.

Data mining needs in proteomics data are similar to that
of microarray data, but the reproducibility issues and the
need for proper transformation of data before analysis is
even more important. Some of the statistical analysis of
proteomics data appeared in Vohradsky J. et al.. Recently
Lee K.R. et al. published statistical analysis of mass
spectrometric proteomics data using latent variable
projection method.

Pharmacogenomics and data mining

For every medication, response falls into three main
groups: some patients respond well with minimal or no
adverse effects, some respond but have unacceptable
adverse effect, and some do not respond at all. The goal of
pharmacogenomics is to predict, using specific information
from patients’ genomes, those that will respond well to
treatment. Many research based pharmaceutical
companies are collecting patients’ genetic information
together with other common biomarkers collected in clinical
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trials. The influx of genetics related data is so vast that
pharmaceutical companies cannot effectively disentangle
the complex relationship between genes, environmental
factors and drug efficacy. Pharmacogenomics impacts
clinical triais in two ways. As stated above, it allows
researchers to be able to select patients that will favorably
respond to the drug being tested. It can also be used to
determine which genetic variations are related to adverse
effects. This is complicated by the fact that the adverse
effects may be unrelated to the known drug target. For
example the genetic variation led to the idiosyncratic liver
toxicity of certain diabetes drug is not obvious. Pharco-
genomics will not only affect the clinical trial but aiso the
prescription of drugs, and the development of genomics
based diagnostics.

Many large biotechs an have pharmacogenomics effort
and the number of start-up companies who are dedicated
to this field is also farge. Data mining needs of
pharmacogenomics are more complicated than mere
genomics or proteomics data since these data would be
merged with traditional pheno-type data. Decision tree-like
toois are commonly used for initial exploratory type
analysis and a company like Golden Helix (http://www.
goldenhelix.com) commercialized a version of decision tree
for analysis of pharmacogenomics data. However, any
prediction modeling tools can be potentially useful for
analysis of such data.

Text mining

The technique of text mining is a departure from most other
analysis techniques known today, namely in that it
attempts to apply data mining techniques to a non-
structured data format, i.e. text. More formally, text mining
constitutes the search for local and global patterns in
natural language text to extract information for clearly
defined purposes. The main obstacle for such a method,
as the reader can infer, involves attaining a fundamental
understanding of natural language text, which remains a
fremendous challenge. However, text mining recognizes
that a solution to the aforementioned problem is not
immediately attainable and instead focuses on extracting
small amounts of information from text with high reliability.

In terms of successful biopharmaceutical applications,
text mining was utilized by Ai C.S. et al. to automatically
extract and organize chemical reaction information from a
text database of the American Chemical Society by using
logical (“grammar-like”) representations.

Other published data mining applications of
pharmaceutical relevance

There have been relatively few published reports of data
mining techniques being applied to drug and chemical

compound databases. This does not mean that such
applications do not exist: it is more likely that there are in
fact such applications but that the companies involved
would rather retain a competitive advantage by not
publishing their methods. A few researchers have
published work on applications that may be of relevance to
GlaxoSmithKline and their work is briefly described below.
This selection is intended to be illustrative rather than
exhaustive.

Cook D.J. et al. describe an interesting algorithm (called
SUBDUE) which uses graph-matching techniques,
coupled with information-theoretic fitness criteria, to search
for natural substructure in structured data. As an example
of their approach, they applied their method to a chemical
compound database where the individual atoms are
mapped to labeled nodes in the graph, and mapping bonds
between the atoms onto labeled edges in the graph. The
SUBDUE algorithm was able to automatically find
commonly used substructures such as isoprene and
benzene rings from the database. While this was only a
“toy” example (a small-scale experiment) and the patterns
discovered were already well-known to chemists, the work
nonetheless illustrates the potential for using such
technigues for iterative, semi-automated pattern discovery
in large scale chemical compound databases.

Data mining of rules was used in crystallography by
Hennessy D. et al. to discover potentially significant new
empirical relationships in crystal growth. The data mining
was applied to the Biological Macromolecular Crystalli-
zation Database to discover relationships between
experimental parameter settings and crystal growth.

Bahler D. et al. applied decision tree and rule learning
algorithms to a database describing chemical compounds
and their carcinogenicity. The learned rules confirmed
expert heuristic knowledge and out-performed all previous
computer-based prediction algorithms, while matching
human performance.

Jain A.N. et al. describe a computer algorithm called
COMPASS which uses an explicit representation of
molecular shape along with neural network models, for
accurate drug activity prediction in drug design. Again, the
use of leaming or mining methods to leverage previously
unseen patterns in data was a critical component in the
success of this work.

There has been a significant amount of work on learning
models from protein and DNA sequences. The hidden
Markov model methods pioneered by Haussler and his
colleagues can be viewed as data mining applied to such
data (see Fayyad U.M. et al. , 1996 for a data mining per-
spective on this work). Less well known, is the work of
Muggleton S. et al. which describes the use of learning
techniques to discover logical rules describing relations
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among proteins. This work characterizes the data mining
approach in general in that the algorithm finds local
patterns in rule form (rather than a full model). Also of
interest is a rather novel technigue for incorporating
background knowledge into the algorithm using logical
formulae to describe known protein relations.

Conclusions

Data mining is an applications-oriented field (rather than
theory-oriented) which leverages well-known techniques
from applied statistics and computer science to generate
particular solutions to the problem of extracting useful
information automatically from data. There are a number of
data mining techniques which are unique to the field, and
increasingly the field is developing its own identity via
annual conferences and so forth. Data mining focuses on
identifying understandable models from data rather than
building models that predict well but which have little
interpretative power.

From the business viewpoint, data mining is not a silver
bullet to the problem of dealing with large data sets. The
application of data mining algorithms still requires close
attention to problem formulation, problem representation,
matching of algorithm and problem, and interpretation of
results. Nonetheless, data mining has already produced a
variety of useful and novel methods for exploring large data
sets. It is safe to predict continued progress in the field,
driven both by research advances based on computer
science and statistics, and practical advances for specific
applications.
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