• 제목/요약/키워드: Minimum Turning

검색결과 76건 처리시간 0.024초

평면교차로 세미트레일러 우회전 도류로 설계 모형 개발 (Development of Right-Turning Channelization Design Models of Semitrailer at Intersections)

  • 이석기;박순용;정준화;이주환
    • 한국도로학회논문집
    • /
    • 제16권2호
    • /
    • pp.99-106
    • /
    • 2014
  • PURPOSES : This study is to develop Right-Turning Channelization Design Models of Semitrailer at Intersections by regression of vehicle tracking simulation. METHODS : Based on the literature review, it was indicated that right-turning channelization design guide of semitrailer is too complex and is not reflected turning speed and approach angle. To verify effectiveness of right turning semitrailer trajectories according to the changing turning speed and approach angle, vehicle tracking simulation was executed. And then, simulation results were analyzed for modeling design elements; minimum turning radius, swept path width, arc length, width of triangle island, of right-turning channelization using regression methods. RESULTS : When the turning speed is getting higher, minimum turning radius, arc length, width of triangle island increased and the approach angle lower, swept path width, arc length, width of triangle island reduced. The turning radius completely reflected by turning speed. CONCLUSIONS : In this research, it was investigated how much design elements are changed according to the turning speed and the approach angle of semitrailer. The developed right-turning channelization design models can help engineers to easy and comfortable design at various conditions.

차량의 최소선회성능 시험의 실시간 계측 및 처리 장치 개발 (Development of Real-time Processing Measurement Device of the Vehicle Minimum Turning Circle Test)

  • 류치영;이정환;조진우;강이석
    • 한국군사과학기술학회지
    • /
    • 제20권1호
    • /
    • pp.48-54
    • /
    • 2017
  • A minimum turning circle test of vehicles is operated by using Real-Time Kinematic(RTK) surveying method which enhances the precision of the Global Positioning System(GPS). A procedure of the conventional method to obtain results is to take post processing after the test. Therefore, it is difficult to ensure results in an instant. This paper introduces developed process and equipment that can immediately obtain results after the minimum turning test without post processing.

자율운항선박의 선회특성이 충돌회피에 미치는 영향 (Effect of Turning Characteristics of Maritime Autonomous Surface Ships on Collision Avoidance)

  • 임정빈
    • 한국항해항만학회지
    • /
    • 제45권6호
    • /
    • pp.298-305
    • /
    • 2021
  • 자율운항선박(Maritime Autonomous Surface Ships, MASS)의 선회특성이 충돌회피에 미치는 영향을 식별하는 것은 MASS의 충돌회피에 핵심적인 단서를 제공할 수 있다. 본 연구의 목적은 다양한 타각과 선속에 의해서 변할 수 있는 선회특성이 충돌회피에 미치는 영향을 식별하기 위한 것이다. 선회특성이 충돌회피에 미치는 영향은 전장 161 미터 선박의 수학 모델을 이용하여 선회권을 관측한 후, 네 가지 충돌조우상황에 대한 충돌회피 수치 시뮬레이션의 결과를 이용하여 분석하였다. 두 선박 사이의 최소상대거리와 최소시간을 평가 변수로 이용하여 평가한 결과, 타각은 최소상대거리의 변화에 주요한 영향을 미치고, 선박의 속력은 최소시간의 변화에 주요한 영향을 미치는 것으로 나타났다. 본 연구에서 제안한 평가 방법은 MASS의 원격제어에서 충돌회피를 하나의 방법으로 적용 가능할 것으로 기대된다.

Development of Optimized Headland Turning Mechanism on an Agricultural Robot for Korean Garlic Farms

  • Ha, JongWoo;Lee, ChangJoo;Pal, Abhishesh;Park, GunWoo;Kim, HakJin
    • Journal of Biosystems Engineering
    • /
    • 제43권4호
    • /
    • pp.273-284
    • /
    • 2018
  • Purpose: Conventional headland turning typically requires repeated forward and backward movements to move the farming equipment to the next row. This research focuses on developing an upland agricultural robot with an optimized headland turning mechanism that enables a $180^{\circ}$ turning positioning to the next row in one steering motion designed for a two-wheel steering, four-wheel drive agricultural robot named the HADA-bot. The proposed steering mechanism allows for faster turnings at each headland compared to those of the conventional steering system. Methods: The HADA-bot was designed with 1.7-m wide wheel tracks to travel along the furrows of a garlic bed, and a look-ahead path following algorithm was applied using a real-time kinematic global positioning system signal. Pivot turning tests focused primarily on accuracy regarding the turning radius for the next path matching, saving headland turning time, area, and effort. Results: Several test cases were performed by evaluating right and left turns on two different surfaces: concrete and soil, at three speeds: 1, 2, and 3 km/h. From the left and right side pivot turning results, the percentage of lateral deviation is within the acceptable range of 10% even on the soil surface. This U-turn scheme reduces 67% and 54% of the headland turning time, and 36% and 32% of the required headland area compared to a 50 hp tractor (ISEKI, TA5240, Ehime, Japan) and a riding-type cultivator (CFM-1200, Asia Technology, Deagu, Rep. Korea), respectively. Conclusion: The pivot turning trajectory on both soil and concrete surfaces achieved similar results within the typical operating speed range. Overall, these results prove that the pivot turning mechanism is suitable for improving conventional headland turning by reducing both turning radius and turning time.

후륜 독립 구동 인 휠 모터의 능동적 조향각 생성을 통한 2WS/2WD In-Wheel 플랫폼의 최소회전 반경 감소 (Reducing the Minimum Turning Radius of the 2WS/2WD In-Wheel Platform through the Active Steering Angle Generation of the Rear-wheel Independently Driven In-Wheel Motor)

  • 김태현;황대규;김봉상;이성희;문희창
    • 로봇학회논문지
    • /
    • 제18권3호
    • /
    • pp.299-307
    • /
    • 2023
  • In the midst of accelerating wars around the world, unmanned robot technology that can guarantee the safety of human life is emerging. ERP-42 is a modular platform that can be used according to the application. In the field of defense, it can be used for transporting supplies, reconnaissance and surveillance, and medical evacuation in conflict areas. Due to the nature of the military environment, atypical environments are predominant, and in such environments, the platform's path followability is an important part of mission performance. This paper focuses on reducing the minimum turning radius in terms of improving path followability. The minimum turning radius of the existing 2WS/2WD in-wheel platform was reduced by increasing the torque of the independent driving in-wheel motor on the rear wheel to generate oversteer. To determine the degree of oversteer, two GPS were attached to the center of the front and rear wheelbases and measured. A closed-loop speed control method was used to maintain a constant rotational speed of each wheel despite changes in load or torque.

극저온 냉각 및 나노유체 극미량 윤활을 적용한 티타늄 합금의 선반 절삭가공 특성에 관한 연구 (Experimental Characterization of Turning Process of Titanium Alloy Using Cryogenic Cooling and Nanofluid Minimum Quantity Lubrication)

  • 김진우;김정섭;이상원
    • 한국정밀공학회지
    • /
    • 제34권3호
    • /
    • pp.185-189
    • /
    • 2017
  • Recently, titanium alloys have been widely used in aerospace, biomedical engineering, and military industries due to their high strength to weight ratio and corrosion resistance. However, it is well known that titanium alloys are difficult-to-cut materials because of a poor machinability characteristic caused by low thermal conductivity, chemical reactivity with all tool materials at high temperature, and high hardness. To improve the machinability of titanium alloys, cryogenic cooling with LN2 (Liquid Nitrogen) and nanofluid MQL (Minimum Quantity Lubrication) technologies have been studied while turning a Ti-6Al-4V alloy. For the analysis of turning process characteristics, the cutting force, the coefficient of friction, and the surface roughness are measured and analyzed according to varying lubrication and cooling conditions. The experimental results show that combined cryogenic cooling and nanofluid MQL significantly reduces the cutting forces, coefficients of friction and surface roughness when compared to wet condition during the turning process of Ti-6Al-4V.

Analysis of Cutting Properties with Reference to Amount of Coolant used in an Environment-Conscious Turning Process

  • Yang, Seung-Han;Lee, Young-Moon;Kim, Young-Suk
    • Journal of Mechanical Science and Technology
    • /
    • 제18권12호
    • /
    • pp.2182-2189
    • /
    • 2004
  • In the recent years, environmentally conscious design and manufacturing technologies have attracted considerable attention. The coolants, lubricants, solvents, metallic chips and discarded tools from manufacturing operations will harm our environment and the earth's ecosystem. In the present work, the Tukey method of multiple comparisons is used to select the minimum level of coolant required in a turning process. The amount of coolant is varied in 270 designed experiments and the parameters cutting temperature, surface roughness, and specific cutting energy are carefully evaluated. The effects of coolant mix ratio as well as the amount of coolant on the turning process are studied in the present work. The cutting temperature and surface roughness for different quantity of coolant are investigated by analysis of variance (ANOVA) - test and a multiple comparison method. ANOVA-test results signify that the average tool temperature and surface roughness depend on the amount of coolant. Based on Tukey's Honestly Significant Difference (HSD) method, one of the multiple comparison methods, the minimum level of coolant is 1.0 L/min with 2% mix ratio in the aspect of controlling tool temperature. F-test concludes that the amount of coolant used does not have any significant effect on specific cutting energy. Finally, Tukey method ascertains that 0.5 L/min with 6% mix ratio is the minimum level of coolant required in turning process without any serious degradation of the surface finish. Considering all aspects of cutting, the minimum coolant required is 1.0 L/min with 6% mix ratio. It is merely half the coolant currently used i.e. 2.0 L/min with 10% mix ratio. Minimal use of coolant not only economically desirable for reducing manufacturing cost but also it imparts fewer hazards to human health. Also, sparing use of coolant will eventually transform the turning process into a more environment-conscious manufacturing process.

컨테이너 운송용 AGV의 운동궤적에 관한 연구 (A Study on the Driving Trajectory of AGV for Container Transport)

  • 박정보;김민주;이승수;김중완;전언찬
    • 한국공작기계학회논문집
    • /
    • 제13권5호
    • /
    • pp.96-102
    • /
    • 2004
  • In this study, we have developed the simulation tool in order to investigate driving trajectory of AGV for container transport. AGV for container transport is different from the indoor AGV in that it is a large size structure at being loaded the weight of 40 ton. and AGV for container transport is applied to front wheel steering, rear wheel steering, all wheel steering, and crap steering. Therefore, we have developed the simulation tool considering dynamic problems and a center of turning in accordance with fourth ways of steering mode. As the result of this study, we have confirmed that this tool is useful and cost-effective in the dynamic analysis or large size vehicles. Also, it is useful to calculate the minimum radius of turning for large size vehicles.

컨테이너 운송용 AGV의 운동궤적에 관한 연구 (A Study on Driving Trajectory of AGV for Container Transport)

  • 이지용;김민주;이승수;김중완;전언찬
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1076-1081
    • /
    • 2004
  • In this study, we have developed the simulation tool in order to investigate driving trajectory of AGV for container transport. AGV for container transport is different from the indoor AGV in that it is a large size structure at being loaded the weight of 40 ton. And AGV for container transport is applied to front wheel steering, rear wheel steering, all wheel steering, and crap steering. Therefore, we have developed the simulation tool considering dynamic problems and center of turning in accordance with four way of steering modes. Throughout some computer simulations, we have confirmed that this tool is useful to analysis dynamic problems and to calculate minimum radius of turning for large size vehicles.

  • PDF

부두 입출항 선박을 위한 선회수역 크기에 관한 고찰 (A Study on the Size of Turning Basin for Vessels of Arrival & Departure in the Berths)

  • 김세원;이윤석;박영수
    • 수산해양교육연구
    • /
    • 제24권6호
    • /
    • pp.872-883
    • /
    • 2012
  • Generally the determination of turning basin for vessels of entering & sailing in the berth has been considered in the design standard of harbor construction rules of the port. In this regard, the turning basin has been determined by the max size of entering vessel of the berth/port. But the size of turning basin may considered the ship's maneuvering ability, operator's skillful power, mooring equipments of the berth, arrangement of the fairway and the environment condition of weather & seas around the designated port area. So this paper suggested the optimum size of turning basin after studying the harbour design rules of the advanced marine countries and using by maneuvering simulator for turning basin size and also evaluated the design standard of harbor construction rules and minimum size of turning basin against ship's length at the Gangjung civil/naval port of Jeju Island.