• 제목/요약/키워드: Minimum Film Thickness

검색결과 186건 처리시간 0.028초

Critical Shoulder Height of Raceway in Ball Bearing Considering Elastohydrodynamic Lubrication

  • Kim, Kyeongsoo;Kim, Taewan
    • Tribology and Lubricants
    • /
    • 제38권6호
    • /
    • pp.281-286
    • /
    • 2022
  • In this study, the effects of Elasto-hydrodynamic lubrication pressure on the critical shoulder height of raceway in an angular contact ball bearing were investigated. Both 3D contact analyses using an influence function and the EHL analysis were conducted for the contact geometry between the ball and raceways. The pressure distributions by 3D contact analysis and EHL analysis for an example bearing were compared. The effect of ellipse truncation on the minimum film thickness also investigated from EHL analysis. The critical shoulder height in the dry contact and the EHL state were compared for various applied loads. It is shown that when the ellipse truncation occurs, the pressure spike for the EHL conjunction is higher than that for the dry contact, and its location moves more inward of the contact center. The steep pressure gradients would increase the flow rate, so in order to maintain flow continuity a significant reduction in film thickness and an abrupt rise in pressure occurs in the edge of shoulder. Significant reduction of the minimum film thickness occurs near the edge of shoulder. The critical shoulder heights in the EHL state are calculated as higher values compared with in the dry contact. This results shows that the determination of critical shoulder height by the EHL analysis is more proper.

파이어링 상태의 일정 축 각속도에서 엔진 베어링의 마모 해석 - Part I: 베어링 마모발생 부위 파악 (Wear Analysis of Engine Bearings at Constant Shaft Angular Speed on a Firing State - Part I: Understanding of Bearing Wear Region)

  • 전상명
    • Tribology and Lubricants
    • /
    • 제34권3호
    • /
    • pp.93-107
    • /
    • 2018
  • The purpose of Part I of this study is to find the potential region of wear scarring on engine journal bearings operating at a constant angular crank shaft velocity under firing conditions. To do this, we calculate the applied loads and eccentricities of a big-end journal bearing installed on a four-stroke and four-cylinder engine at every crank angle. Then, we find potential wear regions, such as a minimum oil film thickness, at every crank angle below most oil film thickness scarring wear (MOFTSW) obtained based on the concept of the centerline average surface roughness. Thus, the wear region is defined as a set of each film thickness below the MOFTSW at every crank angle. In this region, the wear volume changes according to the wear depth and wear angle, depending on the minimum oil film thickness at every crank angle. The total wear volume is the summation during one cycle. Graphical views of the region in the two-dimensional coordinates show the crank angle and bearing angle along the journal center path, indicating the position of the minimum oil film thickness. The results of wear analysis show that the possible wear region is located at a few tens of angles behind the upper center of a big-end bearing at maximum power rpm.

Lundberg형 프로파일의 원통형 로울러의 탄성유체윤활 해석 (Elastohydrodynamic Lubrication Analysis of a Lundberg Profile-type Cylindrical Roller)

  • 박태조
    • Tribology and Lubricants
    • /
    • 제29권6호
    • /
    • pp.353-359
    • /
    • 2013
  • The rollers and/or races in cylindrical and tapered roller bearings should be profiled to relieve high edge stress concentrations caused by their finite lengths and misalignment. In this study, a numerical analysis was performed to investigate the elastohydrodynamic lubrication (EHL) of a Lundberg profile-type cylindrical roller. A finite difference method with fully nonuniform grids and the Newton-Raphson method were used to present detailed EHL pressure distributions and film shapes, as well as the variations in the minimum and central film thicknesses with the profile modification coefficient. In the Lundberg profile, the maximum pressure and minimum film thickness always occurred near the edges. Proper modification of the Lundberg profile considerably increased the minimum film thickness.

오일점도에 따른 디젤엔진용 핀부시 베어링의 유막거동에 관한 연구 (A Study on the Oil Film Behaviors of Pin Bush Bearings for Diesel Engines with Various Engine Oil Viscosities)

  • 김청균;이병관
    • Tribology and Lubricants
    • /
    • 제24권1호
    • /
    • pp.21-26
    • /
    • 2008
  • A pin bush bearing is one of the most important element in the piston engine which is joined a piston to a connecting rod. A pin bush is suffered by heat and changeable repeat loads, which are come from the explosive gas heat and pressures during a reciprocating stroke. Therefore, a tribological behavior of pin bush bearings is very severe compared to other parts of a piston assembly. To keep a stable operation of pin bush bearings effectively, it would be satisfied with proper oil film strength for severe operating conditions and durability, which are strongly related to the oil film thickness, oil film pressure, and a friction loss power. The computed results show that the viscosity of engine oils slightly affects to the minimum oil film thickness and oil film pressure distribution, but is an influential parameter on a total friction loss power. Thus the low viscosity engine oils for an increased operation condition should select a high level of base oil and add a viscosity index improver as an oil film additive.

OPERATION OF TILTING 5-PADS proceeding BEARING AT DIFFERENT GEOMETRIC PARAMETERS OF PADS

  • Strzelecki, S.
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.99-100
    • /
    • 2002
  • Radial, tilting-pad proceeding bearings are applied in high speed rotating machines operating at stable small and mean loads and the peripheral speeds of proceeding reaching 150 m/s. The operation of bearing can be determined by static characteristics including the oil film pressure, temperature and viscosity distributions, minimum oil film thickness, load capacity, power loss, oil flow. The operation of 5-lobe tilted-pad proceeding bearing has been introduced at the assumption of adiabatic oil film. The oil film pressure, temperature and viscosity distributions habe received by iterative solution of the Reynolds', energy and viscosity equations. The resulting oil film force, minimum oil film thickness, power loss. oil flow, maximum oil film pressure, maximum temperature were computed for different sets of bearing geometric parameters as: bearing length to diameter ratio, pad angular length and width as well as pad relative clearance.

  • PDF

Improvement of Lubrication Characteristics in Fuel Injection Pump for Medium-Speed Diesel Engines: Part I - Application of Profile Shape

  • Hong, Sung-Ho
    • Tribology and Lubricants
    • /
    • 제31권5호
    • /
    • pp.205-212
    • /
    • 2015
  • In this research, effects of profile changes of stem section of the plunger on the lubrication characteristics of a fuel injection pump (FIP) were evaluated by hydrodynamic lubrication analysis. The clearance between plunger and barrel was divided into two regions, head and stem. The head was not involved in preventing a decrease of fuel oil pressure. So, research efforts were focused on both edges of the plunger’s stem. The two -dimensional Reynolds equation was used to evaluate lubrication characteristics with variations in viscosity, clearance and profile for a laminar, incompressible, unsteady-state flow. Moreover, the equilibrium equation of moment and forces in the vertical and horizontal directions were used to determine the motion of the plunger. The equations were discretized using the finite difference method. Lubrication characteristics of the FIP were investigated by comparing the dimensionless minimum film thickness, or film parameter, which is the ratio of minimum film thickness to surface roughness. Through numerical analyses, we showed that the profile of the lower edge of the stem had no effect on lubrication characteristics, but the profile of the upper edge had a significant influence on lubrication characteristics. In addition, changes in the profile were more effective in improving lubrication characteristics under low viscosity conditions.

자동차용 엔진베어링의 최적설계에 관한 해석적 연구 (Analytical Study on the Optimized Design of Engine Bearings for a Passenger Car)

  • 김청균;김한구
    • Tribology and Lubricants
    • /
    • 제25권1호
    • /
    • pp.1-6
    • /
    • 2009
  • In this paper, the minimum oil film thickness and the maximum oil film pressure of engine bearings have been analyzed by using the elastohydrodynamic theory and Taguchi's design method as functions of the oil groove width, oil hole diameter, oil hole position, and oil supply pressure. The optimized design of the engine bearing f3r an automotive Diesel engine is very important for supporting a load-carrying capacity due to gas pres-sures from the engine combustion chamber and inertia forces of the piston. The optimized design data of engine bearings indicated that the optimized oil groove width and an oil diameter of a engine bearing are 8mm at the speed of 2,000 rpm for a given 4-cylinder Diesel engine. Thus, the oil groove oil groove and an oil hole for high performances of an engine bearing may be considered as major design parameters compared to other design factors, which are strongly related to the minimum oil film thickness and the maximum oil pressure distribution of the engine oil.

경사면상의 층류 세류유동 특성 (Flow Characteristics of a Laminar Rivulet Down an Inclined Surface)

  • 김병주
    • 설비공학논문집
    • /
    • 제17권11호
    • /
    • pp.1035-1042
    • /
    • 2005
  • In the present study, the principle of minimum energy is employed to configure the shape of rivulet flowing down an inclined surface. The profile of laminar rivulet is determined by numerical integration. The maximum center thickness, which corresponds to the minimum thickness of falling film, is found to exist regardless of liquid flow rate and is compared with the analytical and experimental data. At small liquid flow rate the center thickness of rivulet and its width increase almost linearly with flow rate. Once the center thickness of rivulet becomes very close to its maximum value, its growth rate retards abruptly. However the width of rivulet increases proportionally to the liquid flow rate and most part of its free surface is as flat as that of stable film. The growth rate of rivulet thickness with respect to liquid flow rate becomes larger at bigger contact angle. The width of rivulet increases rapidly with its flow rate especially at small contact angle, As the liquid-vapor interfacial shear stress increases, the center thickness of rivulet decreases with its flow rate, which is remarkable at small contact angle. However the effect of interfacial shear stress on the width of rivulet is almost negligible.

An Analytic Study on Laminar Film Condensation along the Interior Surface of a Cave-Shaped Cavity of a Flat Plate Heat Pipe

  • Lee, Jin-Sung;Kim, Tae-Gyu;Park, Tae-Sang;Kim, Choong-Sik
    • Journal of Mechanical Science and Technology
    • /
    • 제16권7호
    • /
    • pp.966-974
    • /
    • 2002
  • An analytic approach has been employed to study condensate film thickness distribution inside cave-shaped cavity of a flat plate heat pipe. The results indicate that the condensate film thickness largely depends on mass flow rate and local velocity of condensate. The increasing rate of condensate film for circular region reveals about 50% higher value than that of vertical region. The physical properties of working fluid affect significantly the condensate film thickness, such as the condensate film thickness for the case of FC-40 are 5 times larger than that of water. In comparison with condensation on a vertical wall, the average heat transfer coefficient in the cave-shaped cavity presented 10∼15% lower values due to the fact that the average film thickness formed inside the cave-shaped cavity was larger than that of the vertical wall with an equivalent flow length. A correlation formula which is based on the condensate film analysis for the cave-shaped cavity to predict average heat transfer coefficient is presented. Also, the critical minimum fill charge ratio of working fluid based on condensate film analysis has been predicted, and the minimum fill charge ratios for FC-40 and water are about Ψ$\_$crit/=3∼7%, Ψ$\_$crit/=0.5∼1.3% respectively, in the range of heat flux q"=5∼90kW/㎡.

타원접촉의 탄성유체윤활해석 : 제2보 (An Analysis of Elastohydrodynamic Lubrication of Elliptical Contacts : Part II)

  • 박태조;현준수
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1999년도 제29회 춘계학술대회
    • /
    • pp.182-188
    • /
    • 1999
  • A theoretical study of elastohydrodynamic lubrication of elliptical contacts with both rolling and spin has been carried out. A finite difference method and the Newton-Raphson method are applied to solve the problem. The velocity vectors resulting from combined spin and rolling/sliding motion lead to asymmetric pressure distributions and film shapes. Film contours and variations of the minimum and central film thicknesses are compared with various spin-roll ratios. At high spin-roll ratios the minimum film thickness is considerably reduced, whereas the central film thickness decreases less dramatically, The present numerical scheme can be used in the analysis of general elliptical contact problems.

  • PDF