In this paper, a dual algorithm, based on a smoothing function of Bertsekas (1982), is established for solving unconstrained minimax problems. It is proven that a sequence of points, generated by solving a sequence of unconstrained minimizers of the smoothing function with changing parameter t, converges with Q-superlinear rate to a Kuhn-Thcker point locally under some mild conditions. The relationship between the condition number of the Hessian matrix of the smoothing function and the parameter is studied, which also validates the convergence theory. Finally the numerical results are reported to show the effectiveness of this algorithm.
In this paper we propose an on-line tuning method by using genetic algorithm for robust minimax I-PD controller based on new criterion. The new criterion is the Integral of Squared Error (ISE) with a penalty of the derivative of manipulated variable. The work focuses on robust tuning of I-PD controller's parameters in the presence of plant parameter uncertainty. The result of several simulation studies are provided to illustrate the performance of this robust tunig method.
In this paper, one of the traditional game, Gonu game, is implemented and experimented. The Minimax algorithm was applied as a technique to implement the Gonu game. We proposed an evaluation function to implement game in Minimax algorithm. We analyze the efficiency of algorithm for alpha beta pruning to improve the performance after implementation of Gonu game. Weights were analyzed for optimal analysis that affected the win or loss of the game. For the weighting analysis, a competition of human and computer was performed. We also experimented with computer and computer. As a result, we proposed a weighting value for optimal attack and defense.
The Transactions of The Korean Institute of Electrical Engineers
/
v.67
no.12
/
pp.1657-1664
/
2018
This paper proposes a decision making scheme for choosing the best move at each state of game in order to implement an artificial intelligence othello game player. The proposed decision making scheme predicts the various possible states of the game when the game has progressed from the current state, evaluates the degree of possibility of winning or losing the game at the states, and searches the best move based on the evaluation. In this paper, we generate learning data by decomposing the records of professional players' real game into states, matching and accumulating winning points to the states, and using the Artificial Neural Network that learned them, we evaluated the value of each predicted state and applied the Minimax search to determine the best move. We implemented an artificial intelligence player of the Othello game by applying the proposed scheme and evaluated the performance of the game player through games with three different artificial intelligence players.
Communications for Statistical Applications and Methods
/
v.22
no.2
/
pp.147-157
/
2015
We consider a sparse high-dimensional linear regression model. Penalized methods using LASSO or non-convex penalties have been widely used for variable selection and estimation in high-dimensional regression models. In penalized regression, the selection and prediction performances depend on which penalty function is used. For example, it is known that LASSO has a good prediction performance but tends to select more variables than necessary. In this paper, we propose an additive sparse penalty for variable selection using a combination of LASSO and minimax concave penalties (MCP). The proposed penalty is designed for good properties of both LASSO and MCP.We develop an efficient algorithm to compute the proposed estimator by combining a concave convex procedure and coordinate descent algorithm. Numerical studies show that the proposed method has better selection and prediction performances compared to other penalized methods.
Box and Draper( 19(5) listed some properties of a design that should be considered in design selection. But it is impossible that one design criterion from optimal experimental design theory reflects many potential objectives of an experiment, because the theory was originally based on the underlying model and its strict assumption about the error structure. Therefore, when it is neces::;ary to implement multi-objective experimental design. it is common practice to balance out the several optimal design criteria so that each design criterion involved benefits in terms of its relative "high" efficiency. In this study, we proposed several composite design criteria taking the case of heteroscedastic model. WVhen the heteroscedasticity is present in the model. the well known equivalence theorem between 1)- and C-optimality no longer exists and furthermore their design characteristics are sometimes drastically different. We introduced three different design criteria for this purpose: constrained design, combined design, and minimax design criteria. While the first two methods do reflect the prior belief of experimenter, the last one does not take it into account. which is sometimes desirable. Also we extended this method to the case when there are uncertainties concerning the error structure in the model. A simple algorithm and concluslOn follow.On follow.
Board games have many game characters and many state spaces. Therefore, games must be long learning. This paper used reinforcement learning algorithm. But, there is weakness with reinforcement learning. At the beginning of learning, reinforcement learning has the drawback of slow learning speed. Therefore, we tried to improve the learning speed by using the heuristic using the knowledge of the problem domain considering the game tree when there is the same best value during learning. In order to compare the existing character the improved one. I produced a board game. So I compete with one-sided attacking character. Improved character attacked the opponent's one considering the game tree. As a result of experiment, improved character's capability was improved on learning speed.
Fatehi, Mohammad Reza;Ghanbarzadeh, Afshin;Moradi, Shapour;Hajnayeb, Ali
Structural Engineering and Mechanics
/
v.68
no.5
/
pp.549-561
/
2018
Sobol method is applied as a powerful variance decomposition technique in the field of global sensitivity analysis (GSA). The paper is devoted to increase convergence speed of the extracted Sobol indices using a new proposed sampling technique called genetic based Latine hypercube sampling (GBLHS). This technique is indeed an improved version of restricted Latine hypercube sampling (LHS) and the optimization algorithm is inspired from genetic algorithm in a new approach. The new approach is based on the optimization of minimax value of LHS arrays using manipulation of array indices as chromosomes in genetic algorithm. The improved Sobol method is implemented to perform factor prioritization and fixing of an uncertain comprehensive high speed rotor-bearing system. The finite element method is employed for rotor-bearing modeling by considering Eshleman-Eubanks assumption and interaction of axial force on the rotor whirling behavior. The performance of the GBLHS technique are compared with the Monte Carlo Simulation (MCS), LHS and Optimized LHS (Minimax. criteria). Comparison of the GBLHS with other techniques demonstrates its capability for increasing convergence speed of the sensitivity indices and improving computational time of the GSA.
HyungTae, Kim;Duk-Yeon, Lee;Dongwoon, Choi;Jaehyeon, Kang;Dong-Wook, Lee
KSII Transactions on Internet and Information Systems (TIIS)
/
v.17
no.2
/
pp.542-558
/
2023
A digital focus index (DFI) is a value used to determine image focus in scientific apparatus and smart devices. Automatic focus (AF) is an iterative and time-consuming procedure; however, its processing time can be reduced using a general processing unit (GPU) and a multi-core processor (MCP). In this study, parallel architectures of a minimax search algorithm (MSA) are applied to two DFIs: range algorithm (RA) and image contrast (CT). The DFIs are based on a histogram; however, the parallel computation of the histogram is conventionally inefficient because of the bank conflict in shared memory. The parallel architectures of RA and CT are constructed using parallel reduction for MSA, which is performed through parallel relative rating of the image pixel pairs and halved the rating in every step. The array size is then decreased to one, and the minimax is determined at the final reduction. Kernels for the architectures are constructed using open source software to make it relatively platform independent. The kernels are tested in a hexa-core PC and an embedded device using Lenna images of various sizes based on the resolutions of industrial cameras. The performance of the kernels for the DFIs was investigated in terms of processing speed and computational acceleration; the maximum acceleration was 32.6× in the best case and the MCP exhibited a higher performance.
Journal of the Korean Operations Research and Management Science Society
/
v.7
no.2
/
pp.41-48
/
1982
This paper presents an efficient algorithm for finding a new facility(center) in the Euclidean plane in accordance with minimax criterion: that is, the facility is located to minimize the maximum weighted Euclidean distance. The method given in this paper involves computational geometry. Some possible extensions of this problem are also discussed.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.