• Title/Summary/Keyword: Minimal surface

Search Result 422, Processing Time 0.027 seconds

Shear strength formula of CFST column-beam pinned connections

  • Lee, Seong-Hui;Kim, Young-Ho;Choi, Sung-Mo
    • Steel and Composite Structures
    • /
    • v.13 no.5
    • /
    • pp.409-421
    • /
    • 2012
  • Recently, as the height of building is getting higher, the applications of CFST column for high-rise buildings have been increased. In structural system of high-rise building, The RC core and exterior concrete-filled tubular (CFST) column-beam pinned connection is one of the structural systems that support lateral load. If this structural system is used, due to the minimal CFST column thickness compared to that of the CFST column width, the local moment occurred by the eccentric distance between the column flange surface from shear bolts joints degrades the shear strength of the CFST column-beam pinned connections. This study performed a finite element analysis to investigate the shear strength under eccentric moment of the CFST column-beam pinned connections. The column's width and thickness were used as variables for the analysis. To guarantee the reliability of the finite element analysis, an actual-size specimens were fabricated and tested. The yield line theory was used to formulate an shear strength formula for the CFT column-beam pinned connection. the shear strength formula was suggested through comparison on the results of FEM analysis, test and yield lime theory, the shear strength formula was suggested.

Force density ratios of flexible borders to membrane in tension fabric structures

  • Asadi, H.;Hariri-Ardebili, M.A.;Mirtaheri, M.;Zandi, A.P.
    • Structural Engineering and Mechanics
    • /
    • v.67 no.6
    • /
    • pp.555-563
    • /
    • 2018
  • Architectural fabrics membranes have not only the structural performance but also act as an efficient cladding to cover large areas. Because of the direct relationship between form and force distribution in tension membrane structures, form-finding procedure is an important issue. Ideally, once the optimal form is found, a uniform pre-stressing is applied to the fabric which takes the form of a minimal surface. The force density method is one of the most efficient computational form-finding techniques to solve the initial equilibrium equations. In this method, the force density ratios of the borders to the membrane is the main parameter for shape-finding. In fact, the shape is evolved and improved with the help of the stress state that is combined with the desired boundary conditions. This paper is evaluated the optimum amount of this ratio considering the curvature of the flexible boarders for structural configurations, i.e., hypar and conic membranes. Results of this study can be used (in the absence of the guidelines) for the fast and optimal design of fabric structures.

Numerical analysis of temperature and stress distributions in a prestressed concrete slab with pipe cooling (파이프쿨링을 실시한 대형 프리스트레스트 콘크리트 슬래브의 수화열 해석)

  • 주영춘;김은겸;신치범;조규영;박용남
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.275-280
    • /
    • 1999
  • It was analysed the effect of pipe cooling as a measure to avoid thermal cracks due to the heat of hydration during the curing process of a massive prestressed concrete (PSC) slab. PSC slab has a complex three-dimensional shape of which the maximal and minimal thicknesses of cross-section were 2.8 and 0.95m, respectively. Steel pipes of which the diameter was 1 inch were employed for cooling. The horizontal and vertical distances between the contiguous pipes were 0.5 and 0.6m, respectively. One the four layers of cooling pipe were arranged according to the thickness of cross-section. Temperature distribution was calculated by the program developed by the authors, of which the accuracy was verified on a few published papers by the authors. Based on the temperature analysis of the cross-section which had four layers of cooing pipe, the maximum temperature of concrete interior was 54.2$^{\circ}C$ and the maximum differenced between the interior and surface temperatures of concrete was 14.$0^{\circ}C$ and, thereby, the thermal cracking index was 1.1. Upon the stress analysis, the thermal cracking index was 0.92 and the probability of thermal-crack development was 52%. Therefore, it was expected to make it possible to reduce the probability of thermal-crack development in a massive PSC slab by adopting pipe cooling.

  • PDF

Development of Bio-ballistic Device for Laser Ablation-induced Drug Delivery

  • Choi, Ji-Hee;Gojani, Ardian B.;Lee, Hyun-Hee;Jeung, In-Seuk;Yoh, Jack J.
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.3
    • /
    • pp.68-71
    • /
    • 2008
  • Transdermal and topical drug delivery with minimal tissue damage has been an area of vigorous research for a number of years. Our research team has initiated the development of an effective method for delivering drug particles across the skin (transdermal) for systemic circulation, and to localized (topical) areas. The device consists of a micro particle acceleration system based on laser ablation that can be integrated with endoscopic surgical techniques. A layer of micro particles is deposited on the surface of a thin metal foil. The rear side of the foil is irradiated with a laser beam, which generates a shockwave that travels through the foil. When the shockwave reaches the end of the foil, it is reflected as an expansion wave and causes instantaneous deformation of the foil in the opposite direction. Due to this sudden deformation, the microparticles are ejected from the foil at very high speeds, and therefore have sufficient momentum to penetrate soft body tissues. We have demonstrated this by successfully delivering cobalt particles $3\;{\mu}m$ in diameter into gelatin models that represent soft tissue with remarkable penetration depth.

EVALUATION OF GALVANIC CORROSION BEHAVIOR OF SA-508 LOW ALLOY STEEL AND TYPE 309L STAINLESS STEEL CLADDING OF REACTOR PRESSURE VESSEL UNDER SIMULATED PRIMARY WATER ENVIRONMENT

  • Kim, Sung-Woo;Kim, Dong-Jin;Kim, Hong-Pyo
    • Nuclear Engineering and Technology
    • /
    • v.44 no.7
    • /
    • pp.773-780
    • /
    • 2012
  • The article presented is concerned with an evaluation of the corrosion behavior of SA-508 low alloy steel (LAS) and Type 309L stainless steel (SS) cladding of a reactor pressure vessel under the simulated primary water chemistry of a pressurized water reactor (PWR). The uniform corrosion and galvanic corrosion rates of SA-508 LAS and Type 309L SS were measured in three different control conditions: power operation, shutdown, and power operation followed by shutdown. In all conditions, the dissimilar metal coupling of SA-508 LAS and Type 309L SS exhibited higher corrosion rates than the SA-508 base metal itself due to severe galvanic corrosion near the cladding interface, while the corrosion of Type 309L in the primary water environment was minimal. The galvanic corrosion rate of the SA-508 LAS and Type 309L SS couple measured under the simulated power operation condition was much lower than that measured in the simulated shutdown condition due to the formation of magnetite on the metal surface in a reducing environment. Based on the experimental results, the corrosion rate of SA-508 LAS clad with Type 309L SS was estimated as a function of operating cycle simulated for a typical PWR.

An efficient technique to generate reusable matrix to solve a problem in the engineering field (공학문제 해결을 위한 프로그램에서의 재사용이 가능한 Matrix의 효율적 자동생성기법)

  • Lee, Mi-Young
    • The KIPS Transactions:PartD
    • /
    • v.10D no.7
    • /
    • pp.1145-1148
    • /
    • 2003
  • We show the mixed finite element method which induces solutions that has the same order of errors for both the gradient of the solution and the solution itself. The technique to construct an efficient reusable matrix is suggested. Two families of mixed finite element methods are introduced with an automatic generating technique for matrix with my order of basis. The generated matrix by this technique has more accurate values and is a sparse matrix. This new technique is applied to solve a minimal surface problem.

A Study on the Acoustic Characteristics and Absorption Performance Improvement Method of Double Layered Sound Absorption System Using High Density Polyester Absorbing Materials (고밀도 폴리에스터 흡음재를 이용한 이중층 흡음시스템의 음향특성 및 흡음성능 향상 방안에 관한 연구)

  • Yoon, Je-Won;Jang, Kang-Seok;Cho, Yong-Thung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.3
    • /
    • pp.331-339
    • /
    • 2016
  • To improve the acoustic performance of sound absorbing materials, the thickness of the material should be increased or the sound absorbing material having an irregular surface shape should be used. In this study, the acoustic characteristics and methods to improve the acoustic performance of a sound absorbing system equipped with double layered polyester sound absorbing materials were investigated. The numerical model was set up and the results obtained from the model were compared with the actual measurement data. And, strategies to improve the acoustic performance of sound absorbing systems with double layered sound absorbing materials made of polyester with different configuration were shown. So, this study is expected to be usefully used at sites that require high acoustic absorption performance with minimal installation thickness to reduce sounds reflection in narrow spaces such as interior of subway tunnels or in noise barriers installed adjacent to rails.

Reconstruction of Penile and Long Urethral Defect Using a Groin Flap

  • Hwang, So-Min;Lim, On;Kim, Hyung-Do;Shin, Dong-Gil
    • Archives of Reconstructive Microsurgery
    • /
    • v.25 no.1
    • /
    • pp.19-24
    • /
    • 2016
  • Urethral reconstruction is a problematic issue, thus its management can be challenging. Different methods using various materials were introduced for urethral reconstruction. The authors have made some changes in the groin flap surgery, affording more successful urethral reconstruction for defects of long urethra and penile soft tissue. A 45-year-old male requested both functional and cosmetic reconstruction of his defected penis, caused by an iatrogenic urethral injury and chronic infection following removal of paraffin self-injected on the penile shaft. The defect affected the full length of the penile urethra, corpus spongiosum, and prepuce. A groin flap was designed, measuring $28{\times}10cm$. The most distal flap was utilized for the construction of the luminal surface of the neourethra; relaxed length measuring 8 cm, and the lumen wide enough. Competent external meatus and neourethra was confirmed by retrograde cystogram and the patient voided with sufficient urine caliber up to 2 years follow-up. This operative technique has advantages. Donor sites have non-hair bearing skin for the neourethra and minimal or almost notrecognizable donor site morbidity. After surgery, the patient was relieved from voiding difficulties combined with psychological stress. The author would like to introduce a unique approach for the urethral and ventral phalloplasty using the groin flap.

The Adipofascial V-Y Advancement Flap with Skin Graft for Coverage of the Full-Thickness Burns of the Gluteal Region

  • Lee, Yoo Jung;Park, Myong Chul;Park, Dong Ha;Lee, Il Jae
    • Archives of Reconstructive Microsurgery
    • /
    • v.25 no.1
    • /
    • pp.15-18
    • /
    • 2016
  • Any types of burn injury that involve more than deep dermis often require reconstructive treatment. In gluteal region, V-Y fasciocutaneous advancement flap is frequently used to cover the defect. However, in case of large burn wounds, this kind of flap cannot provide adequate coverage because of the lack of normal surrounding tissues. We suggest V-Y adipofascial flap using the surrounding superficially damaged tissue. We present the case of a patient who was referred for full-thickness burn on gluteal region. We performed serial debridement and applied vacuum-assisted closure device to defective area as wound preparation for coverage. When healthy granulation tissue grew adequately, we covered the defect with surrounding V-Y adipofascial flap and the raw surface of the flap was then covered with split-thickness skin graft. We think the use of subcutaneous fat as an adipofascial flap to cover the deeper defect adjacent to the flap is an excellent alternative especially in huge defect with uneven depth varying from subcutaneous fat to bone exposure in terms of minimal donor site morbidity and reliability of the flap. Even if the flap was not intact, it was reuse of the adjacent tissue of the injured area, so it is relatively safe and applicable.

Effect of Ultrasonic Microdroplet Generation in the Low-Temperature Plasma Ionization-Mass Spectrometry

  • Lee, Hyoung Jun;Yim, Yong-Hyeon
    • Mass Spectrometry Letters
    • /
    • v.10 no.4
    • /
    • pp.103-107
    • /
    • 2019
  • Low-temperature plasma (LTP) ionization is one of the ambient ionization methods typically used in mass spectrometry (MS) for fast screening of chemicals with minimal or no sample preparation. In spite of various advantages of LTP ionization method, including simple instrumentation and in-situ analysis, more general applications of the method are limited due to poor desorption of analytes with low volatilities and low ionization efficiencies in the negative ion mode. In order to overcome these limitations, an ultrasonic vibrator of a commercial hand-held humidifier was interfaced with an LTP ionization source, which generated microdroplets from sample solutions and assisted with LTP ionization. Ionization behaviors of various chemicals in microdroplet-assisted LTP (MA LTP) were tested and compared with typical LTP ionization from dried samples applied on a surface. MA LTP efficiently ionized small organic, amino, and fatty acids with low volatilities and high polarities, which were hardly ionized using the standard LTP method. Facile interaction of LTP with ultrafine droplets generated by ultrasonic resonator allows efficient ionization of relatively non-volatile and polar analytes both in the positive and negative ion modes.