1 |
G. Golub and C. V. Loan, Matrix Computations, 2nd Ed, The Johns Hopkins Universtiy Press, Baltimore and London, 1989
|
2 |
C. Canuto, M. Y. Hussaini, A. Quateroni and T. A. Zang, Spectral Methods in Fluid Dynamics, Springer Verlag, New York, 1988
|
3 |
P. A. Raviart and J. M. Thomas, A mixed finite element method for 2nd order elliptic problems, in Proceed. Conf. on Mathematical Aspects of Finite Element methods, G. J. M. Delhays and N. Zuber, eds., Lecture Notes in Mathematics, Springer Verlag, Berlin, Vol.606, pp.3-25, 1987
|
4 |
L. Demkowicz, J. T. Oden, W. Rachowicz and O. Hardy, Toward a universal h-p adaptive finite element methods strategy, Part 1. Constrained approximation and data structure, Comput. Methods. Appl. Mech. Engng., 77, pp.79-112, 1989
DOI
ScienceOn
|
5 |
J. T. Oden, L. Demkowicz, h-p adaptive finite element methods in computational fluid dynamics, Comput. Methods. Appl. Mech. Engng., 89, pp.11-40, 1989
DOI
ScienceOn
|
6 |
F. A. Milner and M. Lee, Mixed finite element methods for nonlinear elliptic problem : the p-version, Numer, Meth, P.D.E., Vol.12, pp. 729-741, 1996
DOI
ScienceOn
|
7 |
F. Brezzi, J. Douglas and L. D. Martini, Two families ofn mixed finite elements for second order elliptic problems, Numer, Math, 47, pp. 217-235, 1985
DOI
|
8 |
F. Brezzi, On the existence, uniqueness, and approximation of saddle point problems arising form Lagrange multipliers, RAIRO, Anal. numer, Vol.2, pp.129-151, 1974
|