Browse > Article
http://dx.doi.org/10.12989/sem.2018.67.6.555

Force density ratios of flexible borders to membrane in tension fabric structures  

Asadi, H. (Department of Civil Engineering, K.N.Toosi University of Technology)
Hariri-Ardebili, M.A. (Department of Civil Engineering, University of Colorado)
Mirtaheri, M. (Department of Civil Engineering, K.N.Toosi University of Technology)
Zandi, A.P. (Department of Civil Engineering, K.N.Toosi University of Technology)
Publication Information
Structural Engineering and Mechanics / v.67, no.6, 2018 , pp. 555-563 More about this Journal
Abstract
Architectural fabrics membranes have not only the structural performance but also act as an efficient cladding to cover large areas. Because of the direct relationship between form and force distribution in tension membrane structures, form-finding procedure is an important issue. Ideally, once the optimal form is found, a uniform pre-stressing is applied to the fabric which takes the form of a minimal surface. The force density method is one of the most efficient computational form-finding techniques to solve the initial equilibrium equations. In this method, the force density ratios of the borders to the membrane is the main parameter for shape-finding. In fact, the shape is evolved and improved with the help of the stress state that is combined with the desired boundary conditions. This paper is evaluated the optimum amount of this ratio considering the curvature of the flexible boarders for structural configurations, i.e., hypar and conic membranes. Results of this study can be used (in the absence of the guidelines) for the fast and optimal design of fabric structures.
Keywords
tension membranes; force density; curvature; saddle shaped; cone shaped; fabric;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Popov, E.V., Lagunova, M.V. and Rotkov, S.I. (2018), "Tensile structure form-finding on the basis of properties of frame-grid template", Proceedings of the International Conference on Geometry and Graphics, Milan, August.
2 Schek, H.J. (1974), "The force density method for form finding and computation of general networks", Comput. Meth. Appl. Mech. Eng., 3(1), 115-134.   DOI
3 Shi, J.X., Wu, Z., Tsukimoto, S. and Shimoda, M. (2018), "Design optimization of cable-membrane structures for form-finding and stiffness maximization", Compos. Struct., 192, 528-536.   DOI
4 Shimoda, M. and Yamane, K. (2015), "A numerical form-finding method for the minimal surface of membrane structures", Struct. Multidiscipl. Optim., 51(2), 333-345.   DOI
5 Singer, P. (1995), Die Berechnung von Minimalflachen, Seifenblasen, Membrane und Pneus aus Geodatischer Sicht, Bayerischen Akademie der Wissenschaften.
6 Tang, Y. and Li, T. (2017), "Equivalent-force density method as a shape-finding tool for cable-membrane structures", Eng. Struct., 151, 11-19.   DOI
7 Tang, Y., Li, T., Ma, X. and Hao, L. (2016), "Extended nonlinear force density method for form-finding of cable-membrane structures", J. Aerosp. Eng., 30(3), 04016101.
8 Tibert, A. and Pellegrino, S. (2011), "Review of form-finding methods for tensegrity structures", Int. J. Space Struct., 26(3), 241-255.   DOI
9 Veenendaal, D. and Block, P. (2012), "An overview and comparison of structural form finding methods for general networks", Int. J. Sol. Struct., 49(26), 3741-3753.   DOI
10 Plateau, J.A.F. (1873), Statique Experimentale et Theorique des Liquides Soumis aux Seules Forces Moleculaires, Gauthier-Villars, 2.
11 Xiang, X.A., Tian, W., Zhao, Y. and Dong, S.L. (2010), "Improved nonlinear force density method accounting for 2-dimensional deformations of membrane element", Eng. Mech., 4, 43.
12 Xu, G., Rabczuk, T., Guler, E., Wu, Q., Hui, K.C. and Wang, G. (2015a), "Quasi-harmonic bezier approximation of minimal surfaces for finding forms of structural membranes", Comput. Struct., 161, 55-63.   DOI
13 Xu, R., Li, D., Liu, W., Jiang, J., Liao, Y. and Wang, J. (2015b), Modified nonlinear force density method for form-finding of membrane sar antenna", Struct. Eng. Mech., 54(6), 1045-1059.   DOI
14 Ye, J., Feng, R.Q., Zhou, S. and Tian, J. (2012), "The modified force-density method for form-finding of membrane structures", Int. J. Steel Struct., 12(3), 299-310.   DOI
15 Zhang, L. (2010), "Reliability analysis of fabric structures", Ph.D. Dissertation, Newcastle University, Newcastle, U.K.
16 Alic, V. and Persson, K. (2016), "Form finding with dynamic relaxation and isogeometric membrane elements", Comput. Meth. Appl. Mech. Eng., 300, 734-747.   DOI
17 Aboul-Nasr, G. and Mourad, S.A. (2015), "An extended force density method for form finding of constrained cable nets", Case Stud. Struct. Eng., 3, 19-32.   DOI
18 Adriaenssens, S., Block, P., Veenendaal, D. and Williams, C. (2014), Shell Structures for Architecture: Form Finding and Optimization, Routledge, London, U.K.
19 Aish, F., Joyce, S., Malek, S. and Williams, C.J. (2015), "The use of a particle method for the modelling of isotropic membrane stress for the form finding of shell structures", Comput.-Aid. Des., 61, 24-31.   DOI
20 Borgart, A. (2010), "An approximate calculation method for air inflated cushion structures for design purposes", Int. J. Space Struct., 25(2), 83-91.   DOI
21 Bridgens, B. and Birchall, M. (2012), "Form and function: The significance of material properties in the design of tensile fabric structures", Eng. Struct., 44, 1-12.   DOI
22 Forster, B. and Chilton, J. (2004), Introduction [European Design Guide for Tensile Surface Structures], In: European Design Guide for Tensile Surface Structures, Tensinet, Brussels, Belgium.
23 Fund, A.I. (2008), Form-Finding Structures, M.Sc. Dissertation, Massachusetts Institute of Technology, Cambridge.
24 Grundig, L., Moncrieff, E., Singer, P. and Strobel, D. (2000), "A history of the principal developments and applications of the force density method in Germany 1970-1999", Proceedings of the 4th International Coll. Computation of Shell & Spatial Structures, Chania-Crete, Greece, June.
25 Huttner, M., Fajman, P. and Maca, J. (2017), "Membrane structures-aspects of form-finding process", Adv. Mater. Res., 1144, 28-33.   DOI
26 Haber, R. and Abel, J. (1982a), "Initial equilibrium solution methods for cable reinforced membranes part i-formulations", Comput. Meth. Appl. Mech. Eng., 30(3), 263-284.   DOI
27 Haber, R. and Abel, J. (1982b), "Initial equilibrium solution methods for cable reinforced membranes part iiimplementation", Comput. Meth. Appl. Mech. Eng., 30(3), 285-306.   DOI
28 Harichandran, A. and Sreevalli, I.Y. (2016), "Form-finding of tensegrity structures based on force density method", Ind. J. Sci. Technol., 9(24), 1-6.
29 Ibrahim, M.W., Hadi, M.A. and Min, Y.H. (2018), "Form-finding using nonlinear analysis method in tensioned fabric structure in the form of handkerchief surface", J. Phys.: Conf. Ser., 995, 012014.   DOI
30 Koohestani, K. (2013), "A computational framework for the formfinding and design of tensegrity structures", Mech. Res. Commun., 54, 41-49.   DOI
31 Koohestani, K. (2014), "Nonlinear force density method for the form-finding of minimal surface membrane structures", Commun. Nonlin. Sci. Numer. Simulat., 19(6), 2071-2087.   DOI
32 Koohestani, K. (2017), "On the analytical form-finding of tensegrities", Compos. Struct., 166, 114-119.   DOI
33 Lahuerta, J.J. (2003), Antoni Gaudi, Phaidon Incorporated Limited.
34 Lan, C., Tu, X., Xue, J., Briseghella, B. and Zordan, T. (2018), "Adaptive form-finding method for form-fixed spatial network structures", Int. J. Adv. Struct. Eng., 1-11.
35 Linkwitz, K. and Schek, H.J. (1971), "Einige bemerkungen zur berechnung von vorgespannten seilnetzkon-struktionen", Arch. Appl. Mech., 40(3), 145-158.
36 Lee, K. and Han, S. (2011), "Advanced shape finding algorithm of force density method based on fem", Adv. Steel Constr., 7(4), 313-329.
37 Li, T., Deng, H., Tang, Y., Jiang, J. and Ma, X. (2017), "Accuracy analysis and form-finding design of uncertain mesh reflectors based on interval force density method", J. Aerosp. Eng., 231(11), 2163-2173.
38 Linkwitz, K. (1999), "About formfinding of double-curved structures", Eng. Struct., 21(8), 709-718.   DOI
39 Malerba, P., Patelli, M. and Quagliaroli, M. (2012), "An extended force density method for the form finding of cable systems with new forms", Struct. Eng. Mech., 42(2), 191-210.   DOI
40 MATLAB (2016), Version 9.1 (R2016b), The MathWorks Inc., Natick, Massachusetts, U.S.A.
41 Maurin, B. and Motro, R. (1998), "The surface stress density method as a form-finding tool for tensile membranes", Eng. Struct., 20(8), 712-719.   DOI
42 Miki, M. and Kawaguchi, K. (2010), "Extended force density method for form-finding of tension structures", J. Int. Assoc. Shell Spat. Struct., 51(4), 291-303.
43 Ohsaki, M. and Hayashi, K. (2017), "Force density method for simultaneous optimization of geometry and topology of trusses", Struct. Multidiscipl. Optim., 56(5), 1157-1168.   DOI
44 Pauletti, R.M. and Pimenta, P.M. (2008), "The natural force density method for the shape finding of taut structures", Comput. Meth. Appl. Mech. Eng., 197(49-50), 4419-4428.   DOI