• Title/Summary/Keyword: Mineralogical characteristics

Search Result 400, Processing Time 0.022 seconds

Green-blue Coloured Cu-Zn Hydrated Sulfate Minerals from Gukjeon Mine in Miryang (밀양 국전광산의 녹-청색 구리-아연 수화황산염 광물)

  • Koo, Hyo Jin;Jang, Jeong Kyu;Do, Jin Young;Jeong, Gi Young;Cho, Hyen Goo
    • Economic and Environmental Geology
    • /
    • v.51 no.6
    • /
    • pp.473-483
    • /
    • 2018
  • Green-blue coloured supergene minerals are covering host rocks along the gallery wall in the Gukjeon mine, a lead - zinc skarn deposit located in Miryang, Gyeongsangnam-do. These minerals have been described as azurite or malachite, but recent study recognized that the green minerals are devilline and blue minerals are Cu-Zn hydrated sulfates, but exact identification and detailed mineral characteristics are also not well known. In this study, we divide green-blue minerals into five groups (GJG) according to their external features and conducted XRD and SEM analyzes in order to identify mineral name and clarify the mineralogical characteristics. GJG-1, a bright bluish green group, consists of brochantite and quartz and GJG-2, a pale green colour with easily crumbly, of schulenbergite and a small amount of gypsum. Although pale blue GJG-3 and glassy lustrous bluish green GJG-4 have the same mineral assemblages with serpierite and gypsum in spite of different colour and luster, gypsum content may control the physical properties. GJG-5 with a gel phase mixture of pale blue and dark blue mineral is comprised of hydrowoodwardite, glaucocerinite, bechererite, serpierite and gypsum. The six green-blue minerals from the Gukjeon mine could be classified by Cu:Zn ratio, (Si + Al) content, Si:Al ratio, and Ca content. The physico-chemical environment of mineral formation is considered to be controlled by the geochemical factors in the surrounding fluid, and it looks forward that the accurate formation environment will be revealed through additional research. This paper gives greater mineralogical significance in the first report of several hydrated sulfate such as serpierite, glaucocerinite and bechererite in Korea. It has also rarely been reported the occurrence of several Cu-Zn hydrated sulfate in the same deposit in the world.

Interpretation of Firing Temperature and Thermal Deformation of Roof Tiles from Ancient Tombs of Seokchon-dong in Seoul, Korea (서울 석촌동 고분군 출토 기와의 소성온도와 열변형 특성 해석)

  • Jin, Hong Ju;Jang, Sungyoon;Lee, Myeong Seong
    • Economic and Environmental Geology
    • /
    • v.54 no.6
    • /
    • pp.671-687
    • /
    • 2021
  • This study investigated the firing temperature and thermal deformation process of roof tiles excavated from the connected stone-mound tomb in Seokchon-dong, Seoul, based on mineralogical and physical properties. A large number of roof tiles were excavated from the tomb site and some roof tiles were deformed by heat and were fired in uneven conditions. The colors of original roof tiles and their cores are mostly yellowish-brown, with high water absorption over 12%, containing fine-grained textures and some minerals such as quartz, feldspars, amphibole, and mica. It is estimated that the original roof tiles were fired below 900℃ in oxidation condition, showing loose matrices and mica layers by scanning electron microscopy. However, deformed roof tiles have the uneven surface color of reddish-brown and bluish-gray, and those cross-sections have sandwich structures in which dense reddish-brown surface and porous grey core coexist. They contained mullite and hercynite, so it was estimated to have been fired over 1,000℃, with 0.81~11% water absorption. In some samples, bloating pores by overfiring were observed, which means that they were fired at more than 1,200℃. In addition, the refirng experiments that the original roof tile was fired between 800℃ and 1,200℃ were carried out to investigate the physical and mineralogical properties of roof tiles compared to deformed ones. As a result, the water absorption decreased rapidly and the mineral phase started to change over 1,000℃. As the temperature gradually rises, the matrices are partially melted and recrystallized, resulting in similar thermal characteristics of deformed roof tiles. Therefore, the roof tiles from ancient tombs in Seokchon-dong seem to experience the secondary high temperature of 1,000 to 1,200℃ under uneven firing conditions, resulting in deformation characteristics such as shape transformation and mineral phase transition. It is considered to have been related to cremation rituals at the tombs of Seockchon-dong during the Baekje period.

Raman Spectroscopic Study for Investigating the Spatial Distribution and Structural Characteristics of Mn-bearing Minerals in Non-spherical Ferromanganese Nodule from the Shallow Arctic Ocean (북극해 천해저 비구형 망가니즈단괴 내 광물종 분포 및 구조적 특성 규명을 위한 라만 분광분석 연구)

  • Sangmi, Lee;Hyo-Jin, Koo;Hyen-Goo, Cho; Hyo-Im, Kim
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.4
    • /
    • pp.409-421
    • /
    • 2022
  • Achieving a highly resolved spatial distribution of Mn-bearing minerals and elements in the natural ferromanganese nodules can provide detailed knowledge of the temporal variations of geochemical conditions affecting the formation processes of nodules. While a recent study utilizing Raman spectroscopy has reported the changes in the manganate mineral phases with growth for spherical nodules from the Arctic Sea, the distributions of minerals and elements in the nodules from the shallow Arctic Sea with non-spherical forms have not yet fully elucidated. Here, we reported the micro-laser Raman spectra with varying data acquisition points along three different profiles from the center to the outermost rim of the non-spherical ferromanganese nodules collected from the East Siberian Sea (~73 m). The elemental distributions in the nodule (such as Mn, Fe, etc.) were also investigated by energy dispersive X-ray spectroscopy (EDS) analysis to observe the internal structure and mineralogical details. Based on the microscopic observation, the internal structures of a non-spherical nodule can be divided into three different regions, which are sediment-rich core, iron-rich substrate, and Mn-Fe layers. The Raman results show that the Mn-bearing mineral phases vary with the data acquisition points in the Mn-Fe layer, suggesting the changes in the geochemical conditions during nodule formation. In addition, we also observe that the mineral composition and structural characteristics depend on the profile direction from the core to the rim. Particularly, the Raman spectra obtained along one profile show the lack of Fe-(oxy)hydroxides and the noticeably high crystallinity of Mn-bearing minerals such as birnessite and todorokite. On the other hand, the spectra obtained along the other two profiles present the presence of significant amount of amorphous or poorly-ordered Fe-bearing minerals and the low crystallinity of Mn-bearing minerals. These results suggest that the diagenetic conditions varied with the different growth directions. We also observed the presence of halite in several layers in the nodule, which can be evidence of the alteration of seawater after nodule formation. The current results can provide the opportunity to obtain detailed knowledge of the formation process and geochemical environments recorded in the natural non-spherical ferromanganese nodule.

Mineralogical Studies on Sulfide Ore Species of the Tong Myeong Tungsten Deposits (동명중석광산산(東明重石鑛山産) 유화광물(硫化鑛物)의 광물학적(鑛物學的) 연구(硏究))

  • Lee, Pyeong-Koo;So, Chil-Sup;Kim, Se-Hyun;Yun, Seong-Taek;Kim, Moon-Young
    • Economic and Environmental Geology
    • /
    • v.19 no.spc
    • /
    • pp.207-226
    • /
    • 1986
  • The skarn type tungsten deposits in Jechon area are developed in the contact aureole of Jurassic granodiorite and lower Paleozoic limestone beds. The Tong Myeong mine contains scheelitebearing skarns found at and near the contacts between crystalline limestone and hornfels. Although the skarns are heterogeneous, there are clear patterns in the preferred associations and nonassociations of minerals on all scales. The skarn show a zonal arrangement from limestone to hydrothermal vein as follow: wollastonite skarn, clinopyroxene skarn, clinopyroxene-garnet skarn, garnet skarn, and vesuvianite skarn. Scheelite, abundant in all skarn units except wollastonite skarn and also in quartz veins near orebodies, is everywhere strongly correlated with pyrrhotite. It is implied that it was a stable phase throughout the evolution of the zoned skarns, at least in pyrrhotite.forming environments. Deposition of scheelite was probably widely caused by increasing $a_{Ca^{2+}}$ in the fluid, resulting from associated and interrelated reactions: $FeCl_2\;aq+H_2S\;aq{\rightarrow}FeS+2H^{+}+2Cl^-$; and $CaCO_3+2H^+{\rightarrow}Ca^{+2}+H_2CO_3$. The spectral reflection powers of nine sulfide species were studied, for three mineralization stage. The shapes and characteristics of the spectral reflectivity profiles are significant in their control of other optical properties. The characteristics of the Vickers microhardness and the optical symmetry for the minerals studied are discussed. Broad radicle groupings of the sulfides can be made with regard to the reflectivity-microhardness values.

  • PDF

Clay Mineralogy of the Gangneung-Donghae Coastal Sediments (강릉-동해 연안 퇴적물의 점토광물에 관한 연구)

  • Koo, Hyo Jin;Choi, Hunsoo;Cho, Hyen Goo
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.3
    • /
    • pp.175-183
    • /
    • 2020
  • There have rarely been performed for the clay mineralogy of the East Sea sediments except for few studies about paleoenvironmental aspect. This study inferred the provenance of sediments based on the clay mineral characteristics and distribution pattern for the 120 sediment samples collected by the box corer from the Gangneung-Donghae area between 2017-2019. The relative proportions of the four major clay minerals are abundant in the order of illite, chlorite, kaolinite, and smectite. The continental shelf sediments below water depth 150 m have more chlorite and kaolinite content and better illite crystallinity, but less illite and smectite content, and S/I index than those of continental slope sediments. Clay mineral composition of the continental shelf sediments are influenced by the adjacent continental geology, because north site (Gangneung area) has more chlorite but south site (Donghae area) has more kaolinite. These characteristics and distribution pattern of clay minerals indicate that the provenance of sediments are different between continental shelf and continental slop. The continental shelf sediments may be introduced the study area by the adjacent small rivers whereas the continental slope sediment might be supplied by current from the south of the study area.

A Study on the Characteristics of Bentonites Produced in Korea (한국산 Bentonite의 특성(特性)에 관(關)한 조사연구(調査硏究))

  • Lee, Jae-Suk;Jung, Pil-Gyun;Choi, Dae-Ung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.10 no.1
    • /
    • pp.69-74
    • /
    • 1977
  • This study has been conducted to identify physico-chemical and clay mineralogical characteristics of bentonites produced in Korea for the purpose of finding good quality bentonite for agricultural ure. The results are summarized as follows: 1. Bentonites are mainly composed of montmorillonite developed from tuffs in a lava flow. 2. Chemical properties of bentonites are: pH in $H_2O$(1:1), 7:cation exchange capacity, 60-96me/100g; content of $SiO_2$, 54-72%; ratio of $SiO_2$ to $Al_2O_3$, 4.1-10.0;oven dry loss of $H_2O$ is higher than the ingnition loss of $H_2O$. 3. The x-ray diffrection patterns of powder bentonites show peaks at $14-15{\AA}$, $4.4{\AA}$, and $2.5{\AA}$, and that of swellen one show $17{\AA}$ when treated with ethylene glycol. 4. Distribution areas of the good quality bentonites were (1) Dogu-Dong, Donghae-Myeon, Yeonil-Gun, Gyeongsangbug-Do (2) Hamyeon-Ri, Yangnam-Myeon, Weolseong-Gun, Gyeongsanbug-Do. (3) Joam-Ri, Gangdong-Myeon, Weolseong-Gun, Gyeongsangbug-Do. (4) Sanha-Ri, Gangdong-Myeon, Ulju-Gun, Gyeongsangnam-Do. (5) Sinhyeon-Ri, Gangdong-Myeon, Ulju-Gun, Gyeongsangnam-Do. (6) Yonghang-Ri, Pyeongchang-Myeon, Pyeongchang-Gun, Gangweon-Do.

  • PDF

Environmental Characteristics of Groundwater for Sedimetary Rocks in Daegu City (대구시 퇴적암 분포 지역의 지하수에 대한 환경지화학적 특성)

  • 이인호;조병욱;이병대
    • The Journal of Engineering Geology
    • /
    • v.13 no.1
    • /
    • pp.1-16
    • /
    • 2003
  • Geochemical characteristics of groundwater in the different kinds of various lithology such as Haman formation, Panyaweol formation, Jusan andesitic formation and Palgongsan granite is distinguished by mineralogical and chemical compositions. The Concentration of the majority of solutes in groundwaters of Haman and Panyaweol formation is higher than in that of andesite and granite. Higher concentration of $HCO_3^{-}{\;}and{\;}SO_4^{2-}$ anions in the groundwater is peculiar. High concentrations of $Ca^{2+},{\;}Mg^{2+},{\;}HCO_3^{-}$ in the groundwaters of the sedimentary rocks result mainly from reaction of $CO^{2-}$ charged water with calcite and weathered feldspars. With the Piper diagram, the groundwaters of Haman formations are mainly plotted in $CaSO_4-CaCl_2$ type, whereas those of Panyaweol formations are plotted in the bothside of $Ca(HCO_3)_2{\;}and{\;}CaSO_4-CaCl_2$ type. Thses two different types of $Ca(HCO_3)_2{\;}and{\;}CaSO_4-CaCl_2$ groundwater were originated from dissolution of calcite($Ca(HCO_3)_2)$ and the oxidation of pyrite($CaSO_4-CaCl_2$), respectively. And it also is influenced by anthropogenic contamination. Three factors were extracted from the factor analysis for chemical data. Factor 1, controlled by $SO_4^{2-},{\;}Na^{+},{\;}Ca^{2+}$ and Fe, explains the dissolution of calcite, plagioclase and oxidation of pyrite. Factor 2, controlled by $HCO_3^{-}{\;}and{\;}Mg^{2+}$, mainly explains the dissolution of Mg-carbonates and dolomitization. Factor 3, controlled by $Cl^{-},{\;}K^{+}{\;}and{\;}NO_3^{-}$, is subject to the influence of artificial pollution including industrial waste water disposal. In this study area, some industrial complex which is close to Keumho river show the higher score of factor 3.

한국 금-은광화작용과 천열수 광상의 성인모델: 탐사에의 적용

  • 최선규;박상준;김창성
    • Proceedings of the KSEEG Conference
    • /
    • 2002.10a
    • /
    • pp.119-136
    • /
    • 2002
  • Contrasts in the style of the gold-silver mineralization in geologic and tectonic settings in Korea, together with radiometric age data, reflect the genetically different nature of hydrothermal activities, coinciding with the emplacement age and depth of Mesozoic magmatic activities. It represents a clear distinction between the plutonic settings of the Jurassic Daebo orogeny and the subvolcanic environments of the Cretaceous Bulgugsa igneous activities. Dunng the Daebo igneous activities (c.a. 200~150 (\ulcorner) Ma) coincident with orogenic time, gold mineralization took place between c.a. 195 and 135 (127 \ulcorner) Ma. The Jurassic Au deposits commonly show several characteristics; prominent association with pegmatites, low Ag/Au ratios In the ore-concentrating parts, massive vein morphology and a distinctively simple mineralogy including Fe-rich sphalerite, galena, chalcopyrite, arsenopyrite, Au-rich electrum, pyrrhotite and/or pyrite. During the Bulgugsa igneous activities (110~50 Ma), the precious-metal deposits are generally characterized by such features as complex vein morphology, medium to high Ag/Au ratios in the ore concentrates, and diversity of ore minerals including base-metal sulfides, pyrite, arsenopyrite, Ag-rich eletrum and native silver with Ag sulfides, Ag-Sb-As sulfosalts and he tellurides. Vein morphology, mineralogical, fluid inclusion and stable isotope results indicate the diverse genetic natures of hydrothermal systems in Korea. The Jurassic Au-dominant deposits (orogenic type) were formed at the relatively high temperature (about 300$^{\circ}$ to 45$0^{\circ}C$) and deep-crustal level (4.0$\pm$1.5 kb) from the hydrothermal fluids containing more amounts of magmatic waters ($\delta$$^{18}$ $O_{H2O}$; 5~10$\textperthousand$). It can be explained by the dominant ore-depositing mechanisms as $CO_2$ boiling and sulfidation, suggestive of hypo- to mesothermal environments. In contrast, the Cretaceous Au-dominant (l13~68 Ma), Au-Ag (108~47 Ma) and AE-dominant (103~45 Ma) deposits, which correspond to volcanic-plutonic-related type, occurred at relatively low temperature (about 200$^{\circ}$ to 35$0^{\circ}C$) and shallow-crustal level (1.0$\pm$0.5 kb) from the ore-forming fluids containing more amounts of less-evolved meteonc waters ($\delta$$^{18}$ $O_{H2O}$;-10~5$\textperthousand$). These characteristics of the Cretaceous precious-metal deposits can be attributed to the complekities in the ore-precipitating mechanisms (mixing, boiling, cooling), suggestive of epi- to mesothermal environments. Therefore, the differences of the emplacement depth between the Daebo and the Bulgugsa igneous activities directly influence the unique temporal and spatial association of the deposit styles.les.

  • PDF

Petrology of the Cretaceous igneous rocks in Gadeog Island, Busan, Korea (부산 가덕도 지역 백악기 화성암류에 대한 암석학적 연구)

  • 고정선;김은희;윤성효
    • The Journal of the Petrological Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.47-63
    • /
    • 2004
  • This study focuses on the petrography and petrochemical characteristics of the volcanic and plutonic rocks in Gadeog island, Busan, Korea. Based on textural and mineralogical characteristics, intermediate volcanic rocks can be divided into andesitic lava flows (porphyritic and massive andesites) and andesitic pyroclastics. Felsic volcanic rocks are composed of rhyolite, rhyolitic welded tuff, and tuff breccia. Plutonic rocks are intruded rhyolite and andesitic rocks, and composed of hornblende granodiorite which contains lots of mafic magma enclaves. Volcanic rocks are composed of andesite, dacite and rhyolite having a range in SiO$_2$ from 59 to 78wt.%. The volcanic rocks belong to the calc-alkaline rock series. Plutonic rocks have a range in SiO$_2$ from 63 to 69wt.%. This compositional variations correspond to those of Cretaceous volcanic and plutonic rocks in the southeastern Gyeongsang basin. The trace element composition and rare earth element patterns of the volcanics, which are characterized by high LREE/HFSE ratios and enrichment in LREE, suggest that they are typical of calc-alkaline volcanic rocks produced in the subduction environment around continental arc. We concluded that volcanic and plutonic rocks in Gadeog Island were evolved from orogenic andesitic magma which was produced by partial melting of the mantle wedge in the subduction environment.

Material Characteristics and Ultrasonic Velocity Diagnosis of the Five-storied Stone Pagoda in Tamni-ri, Uiseong (의성 탑리리 오층석탑의 재질특성과 초음파 물성진단)

  • Lee, Myeong Seong;Lee, Jae Man;Kim, Jae Hwan
    • Korean Journal of Heritage: History & Science
    • /
    • v.45 no.1
    • /
    • pp.70-85
    • /
    • 2012
  • Uiseong Tamni-ri Five-storied Stone Pagoda is composed of andesitic tuff and partially combined with tuff breccia and fine-grained granite. The andesitic tuff is identical to basement rock of Geumseongsan Mountain based on lithological, mineralogical and geochemical characteristics. The pagoda has suffered physical weathering such as crack and scaling, discoloration and biological colonization with complex reaction. Expecially, dark gray and brown discoloration appeared whole over the surface of the pagoda, and three to five-layered exfoliation and granular disintegration dominantly occurred in the fourth and fifth roof stones. It is assuming that the stone elements of the pagoda are evaluated as third to forth grades (average third grade) of weathering compared to fresh rock in Geumseongsan Mountain. The physical strength of the stone elements shows low values in the south and west sides of the pagoda that corresponds high weathering degree of the west side due to exfoliation, crack and granular disintegration. It is necessary to investigate the pagoda for precise deterioration assessment, monitoring and conservation treatment.