DOI QR코드

DOI QR Code

강릉-동해 연안 퇴적물의 점토광물에 관한 연구

Clay Mineralogy of the Gangneung-Donghae Coastal Sediments

  • 구효진 (경상대학교 지질과학과 및 기초과학연구소) ;
  • 최헌수 (한국지질자원연구원 석유해저연구본부) ;
  • 조현구 (경상대학교 지질과학과 및 기초과학연구소)
  • Koo, Hyo Jin (Department of Geology and Environmental Sciences and Research Institute of Natural Science, Gyeongsang National University) ;
  • Choi, Hunsoo (Petroleum and Marine Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Cho, Hyen Goo (Department of Geology and Environmental Sciences and Research Institute of Natural Science, Gyeongsang National University)
  • 투고 : 2020.07.22
  • 심사 : 2020.09.16
  • 발행 : 2020.09.30

초록

한반도 3개 해역 중 동해 퇴적물의 점토광물에 관한 연구는 고환경 변화 측면에서의 일부 연구 외에는 거의 이루어진 바가 없다. 이번 연구에서는 2017년부터 2019년까지 강릉-동해 해역에서 상자형 시료채취기를 이용하여 채취한 120개 퇴적물 시료에 대한 점토광물 특성과 분포 상태를 바탕으로 기원지를 추정하였다. 점토광물 함량은 일라이트, 녹니석, 카올리나이트, 스멕타이트 순으로 풍부하다. 수심 150 m 이하의 대륙붕 퇴적물은 대륙사면 퇴적물에 비하여 녹니석과 카올리나이트 함량은 많고 일라이트 결정도는 좋은데 반하여 일라이트와 스멕타이트 함량과 S/I 지수는 작다. 대륙붕 퇴적물의 경우 강릉 쪽은 녹니석 함량이 많고, 동해 쪽은 카올리나이트 함량이 많은데 이것은 육상 지질을 반영한 것으로 여겨진다. 이와 같은 점토광물의 여러 특징은 대륙붕 퇴적물과 대륙사면 퇴적물의 기원지가 다른 것을 시사한다. 대륙붕 퇴적물은 주변 하천을 통하여 유입되었고, 대륙사면 퇴적물은 해류에 의하여 남쪽으로부터 이동된 것으로 판단된다.

There have rarely been performed for the clay mineralogy of the East Sea sediments except for few studies about paleoenvironmental aspect. This study inferred the provenance of sediments based on the clay mineral characteristics and distribution pattern for the 120 sediment samples collected by the box corer from the Gangneung-Donghae area between 2017-2019. The relative proportions of the four major clay minerals are abundant in the order of illite, chlorite, kaolinite, and smectite. The continental shelf sediments below water depth 150 m have more chlorite and kaolinite content and better illite crystallinity, but less illite and smectite content, and S/I index than those of continental slope sediments. Clay mineral composition of the continental shelf sediments are influenced by the adjacent continental geology, because north site (Gangneung area) has more chlorite but south site (Donghae area) has more kaolinite. These characteristics and distribution pattern of clay minerals indicate that the provenance of sediments are different between continental shelf and continental slop. The continental shelf sediments may be introduced the study area by the adjacent small rivers whereas the continental slope sediment might be supplied by current from the south of the study area.

키워드

참고문헌

  1. Biscaye, P.E., 1965, Mineralogy and sedimentation of recent deep-sea clay in the Antlantic Oceqan and adjacent seas and oceans. Geological Society of American Bulletin, 76, 803-832. https://doi.org/10.1130/0016-7606(1965)76[803:MASORD]2.0.CO;2
  2. Cha, H.J., Lee, C.B., Kim, B.S., Choi, M.S., and Ruttenberg K.C., 2005, Early diagenetic redistribution and burial of phosphorus in the sediments of the southwestern East Sea (Japan Sea). Marine Geology, 216, 127-143. https://doi.org/10.1016/j.margeo.2005.02.001
  3. Chamley, H., 1989, Clay Sedimentology. Springer-Verlag Berlin-Heidelberg-New York, 623p.
  4. Cho, H.G., Kim, S.O. and Yi, H.I., 2012, Clay mineral distribution and characteristics in the southeastern Yellow Sea mud deposits. Journal of the Mineralogical Society of Korea, 25, 163-173 (in Korean with English abstract). https://doi.org/10.9727/jmsk.2012.25.3.163
  5. Cho, H.G., Kim, S.-O., Kwak, K.Y., Choi, H., and Khim, B.-K., 2015, Clay mineral distribution and provenance in the Heuksan mud belt, Yellow Sea. Geo-Marine Letters, 35, 411-419. https://doi.org/10.1007/s00367-015-0417-3
  6. Choi, J.Y. and Kim, S.Y., 1998, Distribution of clay minerals in the korean seas. Jour. Korean Earth Science Society, 19, 524-532 (in Korean with English abstract).
  7. Choi, J.Y., Lim, D.I., Park, C.H., Kim, S.Y., Kang, S.Y., Kang, S. and Jung H.S.. 2010, Characteristics of clay mineral compositions in river sediments around the Yellow Sea and its application to the provenance of the continental shelf mud deposit. Journal of the Geology Society of Korea, 46, 497-509.
  8. Chough, S.K., 1983, Marine Geology of Korean Seas. International Human Resources Development Corporation, Boston, 157p.
  9. Ehrmann, W., 1998, Implications of Late Eocene to Early Miocene clay mineral assemblages in McMurdo sound (Ross Sea, Antarctica) on Paleoclimate and ice dynamics. Palaeogeography, Palaeoclimatology, Palaeoecology, 139, 213-231. https://doi.org/10.1016/S0031-0182(97)00138-7
  10. Esquevin, J., 1969, Influence de la composition chimique des illites sur leur cristallinite. Bull Centre Rech Pau SNPA 3, 147-153.
  11. Fagel, N., 2007, Chapter four clay minerals, deep circulation and climate. Developments in Marine Geology, 1, 139-184. https://doi.org/10.1016/S1572-5480(07)01009-3
  12. Gingele, F.X., Müller, P.M., Schneider, R.R., 1998, Orbital forcing of freshwater input in the Zaire Fan area - clay mineral evidence from the last 200 kyr. Palaeogeography, Palaeoclimatology, Palaeoecology, 138, 17-26. https://doi.org/10.1016/S0031-0182(97)00121-1
  13. Hong, G.H., Kim, S.H., Chung, C.S., Kang, D.J., Shin, D.H., Lee, H.J. and Han, S.J., 1997, 210Pb-derived sediment accumulation rates in the southwestern East Sea (Sea of Japan). Geo-marine Letters, 17, 126-137. https://doi.org/10.1007/s003670050017
  14. Horiuchi, K., Minoura, K., Hoshino, k., Oda, T., Nakamura, T. and Kawai, T., 2000, Paleoenvironmental history of Lake Baikal during the last 23000 years. Palaeogeography Palaeoclimatology Palaeoecolgy, 157, 95-108. https://doi.org/10.1016/S0031-0182(99)00156-X
  15. Hunziker, J.R., Frey, M., Clauer, N., Dallmeyer, R.D., Friedrichsen, H., Flehmig, W., Hochstrasser, K., Roggwiler, P. and Schwander, H., 1986, The evolution of illite to muscovite: mineralogical and isotopic data from the Glarus Alps, Switzerland. Contribution to Mineralogy and Petrology, 92, 157-180. https://doi.org/10.1007/BF00375291
  16. Jun, C.P., Kim, C.H., Kim, Y. and Lee, S.J., 2014, Reconstruction of the hupo basin using grain size and mineral analysis. Journal of the Mineralogical Society of Korea, 27, 159-168 (in Korean with English abstract). https://doi.org/10.9727/jmsk.2014.27.3.159
  17. KIGAM (Korea Institute of Geoscience and Mineral Resources) (2001) Tectonic map of Korea, 1:1,000,000.
  18. Kim, Y., Yi, S., Kim, G.-Y. and Lee, E., 2017, Late Miocene paleoceanography of the Eastern South Korea Plateau, East Sea, inferred from the palynofacies and dinoflagellates of U1430 core, IODP Exp. 346. Journal of the Geological Society of Korea, 53, 645-656 (in Korean with English abstract). https://doi.org/10.14770/jgsk.2017.53.5.645
  19. Kolla, V., Kostecki, J.A., Robinson, F., Biscaye, P.E. and Ray, P.K., 1981, Distributions and origins of clay minerals and quartz in surface sediments of the Arabian Sea. Journal of Sedimentary Research, 51, 563-569.
  20. Koo, H.J., Lee, Y.J., Kim, S.-O. and Cho, H.G., 2018, Clay mineral distribution and provenance in surface sediments of Central Yellow Sea Mud. Geosciences Journal, 21, 989-1000.
  21. Kubler, B., 1964, Les argiles, indicateurs de métamorphisme. Revue Institut Francais du Petrole, 19, 1093-1112 (in French).
  22. Kwak, K.Y., Choi, H. and Cho, H.G., 2016, Paleo-environmental change during the late Holocene in the southeastern Yellow Sea, Korea. Applied Clay Science, 134, 55-61. https://doi.org/10.1016/j.clay.2016.05.007
  23. Lee, H.G., Park, W.Y., Koo, H.J., Choi, J.Y., Jang, J.K. and Cho, H.G., 2019, Changes in Provenance and Transport Process of Fine Sediments in Central South Sea Mud. Journal of the Mineralogical Society of Korea, 32, 235-247 (in Korean with English abstract). https://doi.org/10.9727/jmsk.2019.32.4.235
  24. Lee, S.-J., Kim, C.-H., Jun, C.-P., Lee, S.-J. and Kim, Y.K., 2015, Mineralogical Characteristics of Marine Sediments Cores from Uleung Basin and Hupo Basin, East Sea. Journal of the Mineralogical Society of Korea, 28, 71-81 (in Korean with English abstract). https://doi.org/10.9727/jmsk.2015.28.1.71
  25. Li, J., Hu, B., Wei, H., , Zhao, Z., Zou, L., Bai, F., Dou, Y., Wang, L. and Fang, X., 2014, Provenance variations in the Holocene deposits from the southern Yellow Sea: Clay mineralogy evidence. Continental Shelf Research, 90, 41-51. https://doi.org/10.1016/j.csr.2014.05.001
  26. Lim D.I., Xu, Z.K., Choi, J.Y., Li, T. and Kim, S.Y., 2015, Holocene changes in detrital sediment supply to the eastern part of the central Yellow Sea and their forcing mechanisms. Journal of Asian Earth Sciences, 105, 18-31. https://doi.org/10.1016/j.jseaes.2015.03.032
  27. Liu, J., Tuo, S., Colin, C., Liu, J.T., Huang, C.-Y., Selvaraj, K., Chen, C.-T.A., Zhao, Y., Siringan, F.P., Boulay, S. and Chen, Z., 2008, Detrital fine-grained sediment contribution from Taiwan to the northern SOuth China Sea and its relation to regional ocean circulation. Marine Geology, 255, 149-155. https://doi.org/10.1016/j.margeo.2008.08.003
  28. Liu, Z., Colin, C., Li, X., Zhao, Y., Tuo, S., Chen, Z., Siringan, F.P., Liu, J.T., Huang, C.-Y., You, C.-F. and Huang, K.-F., 2010, Clay mineral distribution in surface sediments of the northeastern South China Sea and surrounding fluvial drainage basins: source and transport. Marine Geology, 277, 48-60. https://doi.org/10.1016/j.margeo.2010.08.010
  29. Park, C.-H., Jou, S., Hong, J.-K., Han, S.-J. and Isezaki, N., 1997, Geological interpretations based on magnetic anomalies and seismic data offshore Yangyang-Samchuk, the East Sea of Korea. Journal of the Geological Society of Korea, 33, 117-126 (in Korean with English abstract).
  30. Park, M.H., Kim, I.S. and Shin, J.B., 2003, Characteristics of the late quaternary tephra layers in the East/Japan sea and their new occurrences in western Ulleung basin sediments. Marine Geology, 202, 135-142. https://doi.org/10.1016/S0025-3227(03)00287-1
  31. Saukel, C., Stein, R., Vogt, C. and Shevchenko, V.P., 2010, Clay-mineral and grain-size distributions in surface sediments of the White Sea (Artic Ocean): indicatiors of sediment sources and transport processes. Geo-Marine Letters, 30, 605-616. https://doi.org/10.1007/s00367-010-0210-2
  32. Son, B.K., Kim, H.J., and Ahn, G.O., 2009, Mineral composition of the sediment of ulleung basin, korea. Journal of the Mineralogical Society of Korea, 22, 115-127 (in Korean with English abstract).
  33. Suresh, N., Ghosh, S.K., Kumar, R. and Sangode, S.J., 2004, Clay-mineral distribution patterns in late Neogene fluvial sediments of the Subathu sub-basin, central sector of Himalayan foreland basin: implications for provenance and climate. Sedimentary Geology, 163, 265-278. https://doi.org/10.1016/j.sedgeo.2003.07.006
  34. The Geological Society of Korea (1999) The Geology of Korea. Sigma Press, 802p (in Korean).
  35. Weaver, C.E., 1989, Clays, Muds, and Shales, Developments in sedimentology, SEPM 44, Amsterdam, Elsevier, 819p.
  36. Yang. S., Jung, H.S., Lim, D.I., and Li, C.X., 2003, A review on the provenance discrimination of sediments in the Yellow Sea. Earth-Science Reviews, 63, 93-120. https://doi.org/10.1016/S0012-8252(03)00033-3
  37. Yun, S.-H., Kim, G.-B., Joe, Y.-J., Koh, C.-S. and Kwon, Y.-K., 2015, Origin and evolution of geologic basement in the Korean continental margin of East Sea, based on the analysis of seismic reflection profiles. Journal of the Geological Society of Korea, 51, 37-52 (in Korean with English abstract). https://doi.org/10.14770/jgsk.2015.51.1.37
  38. Yun, S.-H., Lee, H.-J., Han, S.-J. and Kim, S.-R., 1996, Quaternary sedimentary processes on the East Korean continental slop (Samchuk-Yangyang). Journal of the Geological Society of Korea, 32, 250-266 (in Korean with English abstract).