• 제목/요약/키워드: Mineral Fouling

검색결과 13건 처리시간 0.031초

인공 경수를 이용한 미네랄 파울링 저감에 물리적 수처리 기기들의 효과에 관한 연구 (A Study of Efficacy of Physical Water Treatment Devices for Mineral Fouling Mitigation Using Artificial Hard Water)

  • 박복춘;김선도;백병준;이동환
    • 대한기계학회논문집B
    • /
    • 제29권11호
    • /
    • pp.1229-1238
    • /
    • 2005
  • The objective of the present study was to investigate the efficacy of physical water treatment (PWT) technologies using different catalytic materials and an electronic anti-fouling device in the mitigation of mineral fouling in a once-through flow system with mini-channel heat exchanger. Effects of flow velocity and water hardness on the effectiveness of PWT technologies were experimentally studied. The artificial water hardness varied from 5.0 to 10 mo1/m$^{3}$ as CaCO$_{3}$. For 10 mo1/m$^{3}$ solution, fouling resistance reduced by 13-40$\%$ depending on flow velocity and types of PWT devices. On the other hand, fouling resistance reduced by 21-29$\%$ depending on the PWT devices for 5 mo11m3 solutions. The PWT device using alloy of Cu and Zn as catalyst (CM2) was slightly more effective than the others. SEM photographs of scale produced from the 10 mol/m$^{3}$ solution at 1.0 m/s indicated that calcium carbonate scales without PWT devices were needle-shaped aragonite, which is sticky, dense and difficult to remove. Scales with the PWT devices showed a cluster of spherical or elliptic shape crystals. Both the heat transfer test results and SEM photographs strongly support the efficacy of PWT technologies using catalytic materials and an electronic anti-fouling device in the mitigation of mineral fouling.

Natural Organic Matter Removal and Fouling Control in Low-Pressure Membrane Filtration for Water Treatment

  • Cui, Xiaojun;Choo, Kwang-Ho
    • Environmental Engineering Research
    • /
    • 제19권1호
    • /
    • pp.1-8
    • /
    • 2014
  • Natural organic matter (NOM) is a primary component of fouling in low-pressure membrane filtration, either solely, or in concert with colloidal particles. Various preventive measures to interfere with NOM fouling have been developed and extensively tested, such as coagulation, oxidation, ion exchange, carbon adsorption, and mineral oxide adsorption. Therefore, this article aims to conduct a literature review covering the topics of low-pressure membrane processes, NOM characteristics and fouling behaviors, and diverse fouling control strategies. In-depth explanations and discussion are made regarding why some treatment options are able to remove NOM from source water, but do not reduce fouling. This review provides insight for hybridized membrane processes with respect to NOM removal and fouling mitigation in water treatment.

새 도선 감는 방법을 적용한 전기장 이용 스케일 제거 (Prevention of Particulate Scale with a New winding Method in the Electronic Descaling Technology)

  • 손창현;구상모;김창수;김건우
    • 대한기계학회논문집B
    • /
    • 제26권5호
    • /
    • pp.658-665
    • /
    • 2002
  • This paper presents a new winding method in electronic descaling (ED) technology. Conventional ED technology Produces an oscillating electric field via Faraday's law to provide the necessary molecular agitation to dissolve mineral ions. However, the proposed method produces an additional agitation force for mineral ions, called Lorentz's force. Experiments were performed using various Renolds numbers. A series of tests was conducted to measure the pressure drop across the test section and the overall heat transfer coefficient as a function of time. In order to accelerate the rate of fouling, artificial hard water, 1000ppm CaCO$_3$, was used throughout the tests. The results show that the new winding method accelerates the collision of the mineral ions, thereby improving the system efficiency. The present study can develope more effective fouling-removing equipment with change of estabishment method of coil.

USING LOW-VOLTAGE-HIGH-FREQUENCY ELECTRIC FIELD TO MITIGATE MINERAL FOULING IN A HEAT EXCHANGER

  • ;;;;조영이
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2315-2320
    • /
    • 2007
  • This paper presents an investigative study on the efficacy of a new physical water treatment (PWT) technology using an oscillating electric field to mitigate mineral fouling in heat exchangers. Parallel graphite electrode plates immersed in water were used to generate the electric field directly in water. Artificial hard water at 500 ppm hardness was used in all fouling tests. The inlet temperatures were maintained at 23.5${\pm}$0.5$^{\circ}C$ and 85${\pm}$0.5$^{\circ}C$ for cold and hot water sides, respectively. The results at a cold water-side velocity of 0.3 m/s showed a 16-60% drop in fouling resistances from the baseline test depending on the frequency of the electric field for the PWT-treated cases.

  • PDF

새로운 도선감는 방법을 사용한 전기장을 이용한 스케일 제거 (Prevention of Particulate Scale with a new winding method in the Electronic Descaling Technology)

  • 김건우;안희섭;손창현
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.180-186
    • /
    • 2000
  • This paper presents a new winding method in the electronic descaling(ED) technology. The ED technology Produces an oscillating electric field via the Faraday's law to Provide necessary molecular agitation to dissolved mineral ions. But present method gives another agitation force to mineral ions, which is Lorentz's force. Experiments were peformed at various Renolds number. A series of tests was conducted, measuring pressure drop across test section and the overall heat transfer coefficient as a function of time. In order to accelerate the rate of fouling, artificial hard water of 1000ppm $CaCO_3$ was used throughout the tests. The results show that the new method accelerates collision of mineral ions and improvs efficiency of system.

  • PDF

석탄가스화를 위한 중국산 저급 석탄의 광물학적 및 건조 특성 (Mineralogical and Drying Characteristics of Chinese Low Rank Coal for Coal Gasification)

  • 박종력;김병곤;전호석;김상배;박석환;이재령
    • 한국광물학회지
    • /
    • 제23권3호
    • /
    • pp.199-209
    • /
    • 2010
  • 석탄가스화는 청정석탄이용기술의 한 분야로 최근 국제 유가의 급격한 변동과 더불어 매우 각광을 받고 있는 기술이다. 본 연구에서는 중국 내몽고 지역의 저급석탄을 출발물질로 가스화를 위한 광학적 특성, X선 분광특성, X선 회절특성, 광물학적 특성, 건조특성 등을 분석하였다. 분석결과 석탄의 등급은 slagging성과 fouling성이 매우 낮으며 착화온도가 $250^{\circ}C$ 정도인 brown coal인 것으로 조사되었고, 석영, 능철석, 점토광물 등이 주요 불순물로 혼재하는 것을 알 수 있었다. 또한 초기 수분이 28%로 매우 높기 때문에 이를 쉽게 건조하기 위한 방법으로 열풍건조와 마이크로웨이브 건조기술을 적용하여 비교한 결과, 마이크로웨이브를 이용한 건조가 좀 더 효과적인 것을 알 수 있었다.

Salt Repellent Behavior of Superhydrophobic Filtration Membrane

  • 신봉수;김호영;이광렬;문명운
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.236-236
    • /
    • 2012
  • In this study, we present the salt repellent behavior of superhydrophobic filtration membrane. Bio-fouling or mineral-fouling is the main factor of decreasing the performance of filtration membrane. The superhydrophobic modification of filtration membrane using PECVD (Plasma enhanced chemical vapor deposition) is introduced. The oxygen plasma was introduced for developing nano hairy structures and subsequent HMDSO (Hexamethyldisiloxane) coating was used for enhancing low surface energy. Saline water evaporation test was carried out to evaluate the difference of contamination of salt on superhydrophobic and moderately hydrophobic filtration membrane. EDS and EPMA were used for visualizing the residue of salt crystal.

  • PDF

Ion Exchange Processes: A Potential Approach for the Removal of Natural Organic Matter from Water

  • Khan, Mohd Danish;Ahn, Ji Whan
    • 에너지공학
    • /
    • 제27권2호
    • /
    • pp.70-80
    • /
    • 2018
  • Natural organic matter (NOM) is among the most common pollutant in underground and surface waters. It comprises of humic substances which contains anionic macromolecules such as aliphatic and aromatic compounds of a wide range of molecular weights along with carboxylic, phenolic functional groups. Although the concentration of NOM in potable water usually lies in the range of 1-10 ppm. Conventional treatment technologies are facing challenge in removing NOM effectively. The main issues are concentrated to low efficiency, membrane fouling, and harmful by-product formation. Ion-exchangers can be considered as an efficient and economic pretreatment technology for the removal of NOM. It not only consumes less time for pretreatment but also resist formation of trihalomethanes (THMs), an unwanted harmful by-product. This article provides a comprehensive review of ion exchange processes for the removal of NOM.

An Overview of NRC Projects in Wastewater Treatment by Membrane Processes

  • Kumar, Ashwani
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 1997년도 제5회 하계 Workshop (97 한,카 국제공동 Workshop, 고도 수처리를 위한 막분리 공정)
    • /
    • pp.55-66
    • /
    • 1997
  • A brief introduction to NRC's research activities will be given with special emphasis on membrane processes. NIRC's membrane research group has been involved in many membrane research projects with industrial clients in various sectors of the industry. These projects generally were focused on using membranes for treating industrial wastewater streams for recycling process water, recovering of valuable components and meeting the environmental regulations. The group looked in to various aspects of process development dealing with membrane performance evaluation, optimization of operational parameters, determination of fouling propensities of membranes and simple cost analyses in some cases. Case studies dealing with process development for effluent treatment for the pulp & paper, mining & mineral processing and poultry processing industries will be discussed briefly.

  • PDF