• Title/Summary/Keyword: Mineral Fouling

Search Result 13, Processing Time 0.036 seconds

A Study of Efficacy of Physical Water Treatment Devices for Mineral Fouling Mitigation Using Artificial Hard Water (인공 경수를 이용한 미네랄 파울링 저감에 물리적 수처리 기기들의 효과에 관한 연구)

  • Pak, Bock Choon;Kim, Sun Do;Baek, Byung Joon;Lee, Dong Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.11 s.242
    • /
    • pp.1229-1238
    • /
    • 2005
  • The objective of the present study was to investigate the efficacy of physical water treatment (PWT) technologies using different catalytic materials and an electronic anti-fouling device in the mitigation of mineral fouling in a once-through flow system with mini-channel heat exchanger. Effects of flow velocity and water hardness on the effectiveness of PWT technologies were experimentally studied. The artificial water hardness varied from 5.0 to 10 mo1/m$^{3}$ as CaCO$_{3}$. For 10 mo1/m$^{3}$ solution, fouling resistance reduced by 13-40$\%$ depending on flow velocity and types of PWT devices. On the other hand, fouling resistance reduced by 21-29$\%$ depending on the PWT devices for 5 mo11m3 solutions. The PWT device using alloy of Cu and Zn as catalyst (CM2) was slightly more effective than the others. SEM photographs of scale produced from the 10 mol/m$^{3}$ solution at 1.0 m/s indicated that calcium carbonate scales without PWT devices were needle-shaped aragonite, which is sticky, dense and difficult to remove. Scales with the PWT devices showed a cluster of spherical or elliptic shape crystals. Both the heat transfer test results and SEM photographs strongly support the efficacy of PWT technologies using catalytic materials and an electronic anti-fouling device in the mitigation of mineral fouling.

Natural Organic Matter Removal and Fouling Control in Low-Pressure Membrane Filtration for Water Treatment

  • Cui, Xiaojun;Choo, Kwang-Ho
    • Environmental Engineering Research
    • /
    • v.19 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • Natural organic matter (NOM) is a primary component of fouling in low-pressure membrane filtration, either solely, or in concert with colloidal particles. Various preventive measures to interfere with NOM fouling have been developed and extensively tested, such as coagulation, oxidation, ion exchange, carbon adsorption, and mineral oxide adsorption. Therefore, this article aims to conduct a literature review covering the topics of low-pressure membrane processes, NOM characteristics and fouling behaviors, and diverse fouling control strategies. In-depth explanations and discussion are made regarding why some treatment options are able to remove NOM from source water, but do not reduce fouling. This review provides insight for hybridized membrane processes with respect to NOM removal and fouling mitigation in water treatment.

Prevention of Particulate Scale with a New winding Method in the Electronic Descaling Technology (새 도선 감는 방법을 적용한 전기장 이용 스케일 제거)

  • Son, Chang-Hyeon;Gu, Sang-Mo;Kim, Chang-Su;Kim, Geon-U
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.5
    • /
    • pp.658-665
    • /
    • 2002
  • This paper presents a new winding method in electronic descaling (ED) technology. Conventional ED technology Produces an oscillating electric field via Faraday's law to provide the necessary molecular agitation to dissolve mineral ions. However, the proposed method produces an additional agitation force for mineral ions, called Lorentz's force. Experiments were performed using various Renolds numbers. A series of tests was conducted to measure the pressure drop across the test section and the overall heat transfer coefficient as a function of time. In order to accelerate the rate of fouling, artificial hard water, 1000ppm CaCO$_3$, was used throughout the tests. The results show that the new winding method accelerates the collision of the mineral ions, thereby improving the system efficiency. The present study can develope more effective fouling-removing equipment with change of estabishment method of coil.

USING LOW-VOLTAGE-HIGH-FREQUENCY ELECTRIC FIELD TO MITIGATE MINERAL FOULING IN A HEAT EXCHANGER

  • Tijing, Leonard D.;Pak, Bock-Choon;Baek, Byung-Joon;Lee, Dong-Hwan;Cho, Young-I.
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2315-2320
    • /
    • 2007
  • This paper presents an investigative study on the efficacy of a new physical water treatment (PWT) technology using an oscillating electric field to mitigate mineral fouling in heat exchangers. Parallel graphite electrode plates immersed in water were used to generate the electric field directly in water. Artificial hard water at 500 ppm hardness was used in all fouling tests. The inlet temperatures were maintained at 23.5${\pm}$0.5$^{\circ}C$ and 85${\pm}$0.5$^{\circ}C$ for cold and hot water sides, respectively. The results at a cold water-side velocity of 0.3 m/s showed a 16-60% drop in fouling resistances from the baseline test depending on the frequency of the electric field for the PWT-treated cases.

  • PDF

Prevention of Particulate Scale with a new winding method in the Electronic Descaling Technology (새로운 도선감는 방법을 사용한 전기장을 이용한 스케일 제거)

  • Kim, Gun-Woo;Ahn, Hee-Sub;Sohn, Chang-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.180-186
    • /
    • 2000
  • This paper presents a new winding method in the electronic descaling(ED) technology. The ED technology Produces an oscillating electric field via the Faraday's law to Provide necessary molecular agitation to dissolved mineral ions. But present method gives another agitation force to mineral ions, which is Lorentz's force. Experiments were peformed at various Renolds number. A series of tests was conducted, measuring pressure drop across test section and the overall heat transfer coefficient as a function of time. In order to accelerate the rate of fouling, artificial hard water of 1000ppm $CaCO_3$ was used throughout the tests. The results show that the new method accelerates collision of mineral ions and improvs efficiency of system.

  • PDF

Mineralogical and Drying Characteristics of Chinese Low Rank Coal for Coal Gasification (석탄가스화를 위한 중국산 저급 석탄의 광물학적 및 건조 특성)

  • Park, Chong-Lyuck;Kim, Byoung-Gon;Jeon, Ho-Seok;Kim, Sang-Bae;Park, Suk-Hwan;Lee, Jae-Ryeong
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.3
    • /
    • pp.199-209
    • /
    • 2010
  • Coal gasification technology in the sector of domestic clean coal technologies is being into the limelight since recent dramatic rise of international oil price. In this study, we used a low rank coal from Inner Mongolia, China as a starting material for gasification. Various properties including optical, mineralogical, X-ray spectroscopic, X-ray diffraction, and drying property were measured and tested in order to estimate the suitability of the coal to gasification. The coal was identified as a brown coal of lignite group from the measurement of vitrinite reflectance. The coal has very low slagging and fouling potentials, and the ignition temperature is about $250^{\circ}C$. The major impurities consist of quartz, siderite, and clay minerals. Additionally, the coal had moisture content above 28%. Tests for finding effective drying method showed that the microwave drying is more effective than thermal drying.

Salt Repellent Behavior of Superhydrophobic Filtration Membrane

  • Sin, Bong-Su;Kim, Ho-Yeong;Lee, Gwang-Ryeol;Mun, Myeong-Un
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.236-236
    • /
    • 2012
  • In this study, we present the salt repellent behavior of superhydrophobic filtration membrane. Bio-fouling or mineral-fouling is the main factor of decreasing the performance of filtration membrane. The superhydrophobic modification of filtration membrane using PECVD (Plasma enhanced chemical vapor deposition) is introduced. The oxygen plasma was introduced for developing nano hairy structures and subsequent HMDSO (Hexamethyldisiloxane) coating was used for enhancing low surface energy. Saline water evaporation test was carried out to evaluate the difference of contamination of salt on superhydrophobic and moderately hydrophobic filtration membrane. EDS and EPMA were used for visualizing the residue of salt crystal.

  • PDF

Ion Exchange Processes: A Potential Approach for the Removal of Natural Organic Matter from Water

  • Khan, Mohd Danish;Ahn, Ji Whan
    • Journal of Energy Engineering
    • /
    • v.27 no.2
    • /
    • pp.70-80
    • /
    • 2018
  • Natural organic matter (NOM) is among the most common pollutant in underground and surface waters. It comprises of humic substances which contains anionic macromolecules such as aliphatic and aromatic compounds of a wide range of molecular weights along with carboxylic, phenolic functional groups. Although the concentration of NOM in potable water usually lies in the range of 1-10 ppm. Conventional treatment technologies are facing challenge in removing NOM effectively. The main issues are concentrated to low efficiency, membrane fouling, and harmful by-product formation. Ion-exchangers can be considered as an efficient and economic pretreatment technology for the removal of NOM. It not only consumes less time for pretreatment but also resist formation of trihalomethanes (THMs), an unwanted harmful by-product. This article provides a comprehensive review of ion exchange processes for the removal of NOM.

An Overview of NRC Projects in Wastewater Treatment by Membrane Processes

  • Kumar, Ashwani
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1997.06a
    • /
    • pp.55-66
    • /
    • 1997
  • A brief introduction to NRC's research activities will be given with special emphasis on membrane processes. NIRC's membrane research group has been involved in many membrane research projects with industrial clients in various sectors of the industry. These projects generally were focused on using membranes for treating industrial wastewater streams for recycling process water, recovering of valuable components and meeting the environmental regulations. The group looked in to various aspects of process development dealing with membrane performance evaluation, optimization of operational parameters, determination of fouling propensities of membranes and simple cost analyses in some cases. Case studies dealing with process development for effluent treatment for the pulp & paper, mining & mineral processing and poultry processing industries will be discussed briefly.

  • PDF