• Title/Summary/Keyword: Milled grain

Search Result 337, Processing Time 0.029 seconds

Effect of Thresher Drum-Speed on the Quality of the Milled Rice (탈곡기의 급동 속도가 도정 손실에 미치는 영향)

  • 정창주;고학균;이종호;강화석
    • Journal of Biosystems Engineering
    • /
    • v.4 no.2
    • /
    • pp.10-24
    • /
    • 1979
  • It is understood that drum speed of threshers and the moisture content of paddy grains to be threshed, respectively, have a signific:mt effect upon rice recoveries. Threshing under an increased drum speed would give a high performance rate, which is the general practice in custom work threshing in association with the use of semiauto-t hreshers. In the connection, however, it may result in the promotion of grain cracks and brokens of the rice product after milling. No reference or determination for an opti mum drum speed of the thresher is made available for various grain moisture contents at the time of the threshing operation and for different rice varieties especially for the Tongil rice varieties. This study was Conducted to find out and determine effects of the drum speeds on grain losses. The grain loss was quantified in terms of recovery rates of rice grains after treatments. Samples of each of all treatments were taken from the grain sampling plate placed in the grain conveyor of threshers. The grain sample plate was specially provided for this experiment. The brown-rice, milling, and head-rice recJveries were tes ted in the laboratory mill, respectively. Two rice varieties, Akibare and Suweon 251, each with five levels of different moist\ulcornerure contents at harvest and six levels of different drum speeds of threshers, were selected and used for treatments in this experiment. Two conditions of materials were tested in the thresher. One condition was to thresh the experimental material immediately after cutting, referred to as the wet-material thr eshing in this study. The other was to thresh the experimental :material, dried to contain about 15-16 percent of the grain moisture under the shocking operation. This is referred to as the dry-material threshing in this study. In additioon, field measurements for the grain moistures and drum-sdeeds under actual operation practices of the traditional field threshing, were conducted with a view to comparing with results of the experimental treatments. The results of the study may be summarized as follows: 1. For threshing treatments of Japonica-type rice variety (Akibare) , the effect of drum speeds and levels of grain moisture at cutting upon brown-rice, milling, and head-rice recoveries were found statistically significant. No significant difference in these recovery rates was noticed regardless of whether the material was threshed right after cutting or after drying by the shocking operation. 2. For the Tongil-sister rice variety(Suweon 251), milling recovery for the varied drum-speed and the grain~moisture level at cutting was found statististically significant. Th milling recovery was much significant when associated with the wet-material thres\ulcornerhing compared to the dry-material threshing. 3. The optimum peripheral velocity to be maintained at the edge of teeth on the thr\ulcorneresher drum was determined and may be recommanded as that of about 12 to 13 meters per second in view of the maximum recovery rate of the milled rice. 4. The effect of the drum speed on the qualitative loss of the milled rice was much greater in the case of the Tongil variety than Japonica. This effect was also greater by the wet-material threshing than by the dry-material threshing. Therefore, to apply the wet-material threshing operation for the Tongil variety, in particular, it should be very important to introduce the kind of threshing technology which would maintain the drum speed at optimum. 5. A field survey for the actual drum speed of threshing operations for 50 threshers indicated that average peripheral velccity was 12.76m/sec., and that the range was from 10.50 to 14.90m/sec. Approximately, more than 30% of the experimented and measured threshers were being operated at speeds which exceeded the optimum speed determined and assessed in this study. Accordingly, it should be highly desirable and important to take counter-measures against these threshing practices of operational overspeed.

  • PDF

Effect of Thresher Drum-Speed on the Quality of the Milled Rice (탈곡기의 급동 속도가 도정 손실에 미치는 영향)

  • Chung, Chang Joo;Koh, Hak Kyun;Lee, Chong Ho;Kang, Hwa Seug
    • Journal of Biosystems Engineering
    • /
    • v.4 no.2
    • /
    • pp.9-9
    • /
    • 1979
  • It is understood that drum speed of threshers and the moisture content of paddy grains to be threshed, respectively, have a signific:mt effect upon rice recoveries. Threshing under an increased drum speed would give a high performance rate, which is the general practice in custom work threshing in association with the use of semiauto-t hreshers. In the connection, however, it may result in the promotion of grain cracks and brokens of the rice product after milling. No reference or determination for an opti mum drum speed of the thresher is made available for various grain moisture contents at the time of the threshing operation and for different rice varieties especially for the Tongil rice varieties. This study was Conducted to find out and determine effects of the drum speeds on grain losses. The grain loss was quantified in terms of recovery rates of rice grains after treatments. Samples of each of all treatments were taken from the grain sampling plate placed in the grain conveyor of threshers. The grain sample plate was specially provided for this experiment. The brown-rice, milling, and head-rice recJveries were tes ted in the laboratory mill, respectively. Two rice varieties, Akibare and Suweon 251, each with five levels of different moist?ure contents at harvest and six levels of different drum speeds of threshers, were selected and used for treatments in this experiment. Two conditions of materials were tested in the thresher. One condition was to thresh the experimental material immediately after cutting, referred to as the wet-material thr eshing in this study. The other was to thresh the experimental :material, dried to contain about 15-16 percent of the grain moisture under the shocking operation. This is referred to as the dry-material threshing in this study. In additioon, field measurements for the grain moistures and drum-sdeeds under actual operation practices of the traditional field threshing, were conducted with a view to comparing with results of the experimental treatments. The results of the study may be summarized as follows: 1. For threshing treatments of Japonica-type rice variety (Akibare) , the effect of drum speeds and levels of grain moisture at cutting upon brown-rice, milling, and head-rice recoveries were found statistically significant. No significant difference in these recovery rates was noticed regardless of whether the material was threshed right after cutting or after drying by the shocking operation. 2. For the Tongil-sister rice variety(Suweon 251), milling recovery for the varied drum-speed and the grain~moisture level at cutting was found statististically significant. Th milling recovery was much significant when associated with the wet-material thres?hing compared to the dry-material threshing. 3. The optimum peripheral velocity to be maintained at the edge of teeth on the thr?esher drum was determined and may be recommanded as that of about 12 to 13 meters per second in view of the maximum recovery rate of the milled rice. 4. The effect of the drum speed on the qualitative loss of the milled rice was much greater in the case of the Tongil variety than Japonica. This effect was also greater by the wet-material threshing than by the dry-material threshing. Therefore, to apply the wet-material threshing operation for the Tongil variety, in particular, it should be very important to introduce the kind of threshing technology which would maintain the drum speed at optimum. 5. A field survey for the actual drum speed of threshing operations for 50 threshers indicated that average peripheral velccity was 12.76m/sec., and that the range was from 10.50 to 14.90m/sec. Approximately, more than 30% of the experimented and measured threshers were being operated at speeds which exceeded the optimum speed determined and assessed in this study. Accordingly, it should be highly desirable and important to take counter-measures against these threshing practices of operational overspeed.

Current Status and Perspectives in Varietal Improvement of Rice Cultivars for High-Quality and Value-Added Products (쌀 품질 고급화 및 고부가가치화를 위한 육종현황과 전망)

  • 최해춘
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47
    • /
    • pp.15-32
    • /
    • 2002
  • The endeavors enhancing the grain quality of high-yielding japonica rice were steadily continued during 1980s-1990s along with the self-sufficiency of rice production and the increasing demands of high-quality rices. During this time, considerably great progress and success was obtained in development of high-quality japonica cultivars and quality evaluation techniques including the elucidation of interrelationship between the physicochemical properties of rice grain and the physical or palatability components of cooked rice. In 1990s, some high-quality japonica rice cultivars and special rices adaptable for food processing such as large kernel, chalky endosperm, aromatic and colored rices were developed and its objective preference and utility was also examined by a palatability meter, rapid-visco analyzer and texture analyzer, Recently, new special rices such as extremely low-amylose dull or opaque non-glutinous endosperm mutants were developed. Also, a high-lysine rice variety was developed for higher nutritional utility. The water uptake rate and the maximum water absorption ratio showed significantly negative correlations with the K/Mg ratio and alkali digestion value(ADV) of milled rice. The rice materials showing the higher amount of hot water absorption exhibited the larger volume expansion of cooked rice. The harder rices with lower moisture content revealed the higher rate of water uptake at twenty minutes after soaking and the higher ratio of maximum water uptake under the room temperature condition. These water uptake characteristics were not associated with the protein and amylose contents of milled rice and the palatability of cooked rice. The water/rice ratio (in w/w basis) for optimum cooking was averaged to 1.52 in dry milled rices (12% wet basis) with varietal range from 1.45 to 1.61 and the expansion ratio of milled rice after proper boiling was average to 2.63(in v/v basis). The major physicochemical components of rice grain associated with the palatability of cooked rice were examined using japonica rice materials showing narrow varietal variation in grain size and shape, alkali digestibility, gel consistency, amylose and protein contents, but considerable difference in appearance and texture of cooked rice. The glossiness or gross palatability score of cooked rice were closely associated with the peak, hot paste and consistency viscosities of viscosities with year difference. The high-quality rice variety "IIpumbyeo" showed less portion of amylose on the outer layer of milled rice grain and less and slower change in iodine blue value of extracted paste during twenty minutes of boiling. This highly palatable rice also exhibited very fine net structure in outer layer and fine-spongy and well-swollen shape of gelatinized starch granules in inner layer and core of cooked rice kernel compared with the poor palatable rice through image of scanning electronic microscope. Gross sensory score of cooked rice could be estimated by multiple linear regression formula, deduced from relationship between rice quality components mentioned above and eating quality of cooked rice, with high probability of determination. The $\alpha$-amylose-iodine method was adopted for checking the varietal difference in retrogradation of cooked rice. The rice cultivars revealing the relatively slow retrogradation in aged cooked rice were IIpumbyeo, Chucheongyeo, Sasanishiki, Jinbubyeo and Koshihikari. A Tonsil-type rice, Taebaegbyeo, and a japonica cultivar, Seomjinbyeo, showed the relatively fast deterioration of cooked rice. Generally, the better rice cultivars in eating quality of cooked rice showed less retrogradation and much sponginess in cooled cooked rice. Also, the rice varieties exhibiting less retrogradation in cooled cooked rice revealed higher hot viscosity and lower cool viscosity of rice flour in amylogram. The sponginess of cooled cooked rice was closely associated with magnesium content and volume expansion of cooked rice. The hardness-changed ratio of cooked rice by cooling was negatively correlated with solids amount extracted during boiling and volume expansion of cooked rice. The major physicochemical properties of rice grain closely related to the palatability of cooked rice may be directly or indirectly associated with the retrogradation characteristics of cooked rice. The softer gel consistency and lower amylose content in milled rice revealed the higher ratio of popped rice and larger bulk density of popping. The stronger hardness of rice grain showed relatively higher ratio of popping and the more chalky or less translucent rice exhibited the lower ratio of intact popped brown rice. The potassium and magnesium contents of milled rice were negatively associated with gross score of noodle making mixed with wheat flour in half and the better rice for noodle making revealed relatively less amount of solid extraction during boiling. The more volume expansion of batters for making brown rice bread resulted the better loaf formation and more springiness in rice breed. The higher protein rices produced relatively the more moist white rice bread. The springiness of rice bread was also significantly correlated with high amylose content and hard gel consistency. The completely chalky and large grain rices showed better suitability far fermentation and brewing. The glutinous rice were classified into nine different varietal groups based on various physicochemical and structural characteristics of endosperm. There was some close associations among these grain properties and large varietal difference in suitability to various traditional food processing. Our breeding efforts on improvement of rice quality for high palatability and processing utility or value-adding products in the future should focus on not only continuous enhancement of marketing and eating qualities but also the diversification in morphological, physicochemical and nutritional characteristics of rice grain suitable for processing various value-added rice foods.ice foods.

Ultra-fine Grained and Dispersion-strengthened Titanium Materials Manufactured by Spark Plasma Sintering

  • Handtrack, Dirk;Sauer, Christa;Kieback, Bernd
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.725-726
    • /
    • 2006
  • Ultra-fine grained and dispersion-strengthened titanium materials (Ti-Si, Ti-C, Ti-Si-C) have been produced by high energy ball milling and spark plasma sintering (SPS). Silicon or/and carbon were milled together with the titanium powder to form nanometer-sized and homogeneously distributed titanium silicides or/and carbides as dispersoids, that should prevent grain coarsening during the SPS compaction and contribute to strengthening of the material. The microstructures and the mechanical properties showed that strength, hardness and wear resistance of the sintered materials have been significantly improved by the mechanisms of grain refinement and dispersion strengthening. The use of an organic fluid as carrier of the dispersoid forming elements caused a significant increase in ductility.

  • PDF

Mechanical Behavior of Al/C60-fullerenes Nanocomposites (풀러렌이 분산된 알루미늄기지 나노복합재의 기계적 거동)

  • Choi, Hyun-Joo
    • Composites Research
    • /
    • v.26 no.2
    • /
    • pp.111-115
    • /
    • 2013
  • Aluminum-based composites containing $C_{60}$-fullerenes are produced by hot rolling of ball-milled powder. The grain size of aluminum is effectively reduced to ~100 nm during ball-milling processes, leading to grain refinement strengthening of the composite. Furthermore, $C_{60}$-fullerenes are gradually dispersed during ball-milling processes and hence the strength of the composite increases with the volume of $C_{60}$-fullerenes. The composite containing 10 vol% $C_{60}$-fullerenes with a grain size of ~ 100 nm exhibits ~1 GPa of compressive strength.

Effect of milling on the electrical properties of Ba(Fe1/2Ta1/2)O3 ceramic

  • Mahto, Uttam K.;Roy, Sumit K.;Chaudhuri, S.;Prasad, K.
    • Advances in materials Research
    • /
    • v.5 no.3
    • /
    • pp.181-192
    • /
    • 2016
  • In this work effect of high energy milling on the structural and electrical properties of $Ba(Fe_{1/2}Ta_{1/2})O_3$ (BFT) ceramic synthesized using standard solid-state reaction method were investigated. X-ray diffraction studies indicated that the unit cell structure for all the samples to be hexagonal (space group: P3m1). FTIR spectra also confirmed the formation of BFT without any new phase. The milled (10 h) BFT ceramic showed the formation of small grain sizes (<$2{\mu}m$) which is beneficial for dielectric applications in high density integrated devices. Besides, the milled (10 h) BFT ceramic sample exhibited superior dielectric properties (enhancement in ${\varepsilon}^{\prime}-value$ and reduction in $tg{\delta}-value$) compared to un-milled one. Impedance analysis indicated the negative temperature coefficient of resistance (NTCR) character. The correlated barrier hopping model (jump relaxation type) is found to successfully explain the mechanism of charge transport in present ceramic samples.

Mechanical Properties and Fabrication of TiAl Alloy by Pulsed Current Activated Sintering (펄스전류 활성 소결에 의한 나노구조의 TiAl 합금 제조와 기계적 성질)

  • Du, Song-Lee;Kim, Na-Ri;Kim, Won-Baek;Cho, Sung-Wook;Shon, In-Jin
    • Journal of Powder Materials
    • /
    • v.17 no.5
    • /
    • pp.373-378
    • /
    • 2010
  • Nanostuctured TiAl powder was synthesized by high energy ball milling. A dense nanostuctured TiAl was consolidated using pulsed current activated sintering method within 2 minutes from mechanically synthesized powders of TiAl and horizontally milled powders of Ti+Al. The grain size and hardness of TiAl sintered from horizontally milled Ti+Al powders and high energy ball milled TiAl powder were 35 nm, 20 nm and 450 kg/$mm^2$, 630 kg/$mm^2$, respectively.

Mapping of grain alkali digestion trait using a Cheongcheong/Nagdong doubled haploid population in rice

  • Kim, Hak Yoon;Kim, Kyung-Min
    • Journal of Plant Biotechnology
    • /
    • v.43 no.1
    • /
    • pp.76-81
    • /
    • 2016
  • We performed a molecular marker-based analysis of quantitative trait loci for traits that determine the quality of appearance of grains using 120 doubled haploid lines developed by anther culture from the F1 cross between 'Cheongcheong' (Oryza sativa L. ssp. Indica) and 'Nagdong' (Oryza sativa L. ssp. Japonica). We therefore calculated the alkali digestion value (ADV), used to indirectly measure gelatinization temperature, to evaluate the quality of cooked rice in 2013 and 2014. The ADV score of frequency distribution was higher milled rice than brown rice. In total, nine different quantitative trait loci (QTLs) were found on 5 chromosomes in 2013 and 2014. Also, chromosome 5, 8 were detected over two years. We conclude that selected molecular markers from this QTL analysis could be exploited in future rice quality. In conclusion, we investigated ADV of brown and milled rice in CNDH population. This study found nine QTLs related to the ADV of brown and milled rice. The detected one marker can be used to select lines with desirable eating-quality traits because ADV is closely associated with the eating quality of cooked rice. Therefore, it will be useful to collect resources and distinguishable in many varieties for rice breeding program.

Rapid Sintering and Synthesis of TiAl by High-Frequency Induction Heating and its Mechanical properties (고주파유도 가열에 의한 나노구조의 TiAl 급속소결과 합성 및 기계적 성질)

  • Kim, Na-Ri;Na, Kwon-Il;Kim, Wonbaek;Cho, Sung-Wook;Shon, In-Jin
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.11
    • /
    • pp.989-994
    • /
    • 2010
  • A nanopowder of TiAl was synthesized by high energy ball milling. Dense nanostuctured TiAl was consolidated using a high frequency induction heated sintering method within 2 minutes from mechanically synthesized powders of TiAl and horizontally milled powders of Ti+Al. Properties of the TiAl obtained using the two methods were compared. The grain size and hardness of TiAl sintered from horizontally milled Ti+Al powders and high energy ball milled TiAl powder were 40 nm, 20 nm, and $630kg/mm^2$, $700kg/mm^2$, respectively.

Rapid Sintering of FeAl by Pulsed Current Activated Heating and its Mechanical Properties (펄스 전류 활성 가열에 의한 나노구조의 FeAl 급속소결과 기계적 성질)

  • Jo, Seung-Hoon;Ko, In-Yong;Doh, Jung-Mann;Yoon, Jin-Kook;Shon, In-Jin
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.7
    • /
    • pp.639-643
    • /
    • 2010
  • Nanopowder of FeAl was synthesized by high energy ball milling. Using the pulsed current activated sintering method, a dense nanostuctured FeAl was consolidated within 2 minutes from mechanically synthesized powders of FeAl and horizontally milled powders of Fe+Al. The grain size and hardness of FeAl sintered from horizontally milled Fe+Al powders and high energy ball milled FeAl powder were 150 nm, 50 nm and $466\;kg/mm^2$, $574\;kg/mm^2$, respectively.