DOI QR코드

DOI QR Code

Mechanical Properties and Fabrication of TiAl Alloy by Pulsed Current Activated Sintering

펄스전류 활성 소결에 의한 나노구조의 TiAl 합금 제조와 기계적 성질

  • Du, Song-Lee (Division of Advanced Materials Engineering and Research Center for Advanced Materials Development, Engineering College, Chonbuk National University) ;
  • Kim, Na-Ri (Division of Advanced Materials Engineering and Research Center for Advanced Materials Development, Engineering College, Chonbuk National University) ;
  • Kim, Won-Baek (Mineral Resources Research Division, Korea Institute of Geoscienceand Mineral Resources) ;
  • Cho, Sung-Wook (Mineral Resources Research Division, Korea Institute of Geoscienceand Mineral Resources) ;
  • Shon, In-Jin (Division of Advanced Materials Engineering and Research Center for Advanced Materials Development, Engineering College, Chonbuk National University)
  • 두송이 (전북대학교 신소재공학부 신소재 개발 연구센터) ;
  • 김나리 (전북대학교 신소재공학부 신소재 개발 연구센터) ;
  • 김원백 (한국지질자원연구원) ;
  • 조성욱 (한국지질자원연구원) ;
  • 손인진 (전북대학교 신소재공학부 신소재 개발 연구센터)
  • Received : 2010.07.20
  • Accepted : 2010.09.06
  • Published : 2010.10.28

Abstract

Nanostuctured TiAl powder was synthesized by high energy ball milling. A dense nanostuctured TiAl was consolidated using pulsed current activated sintering method within 2 minutes from mechanically synthesized powders of TiAl and horizontally milled powders of Ti+Al. The grain size and hardness of TiAl sintered from horizontally milled Ti+Al powders and high energy ball milled TiAl powder were 35 nm, 20 nm and 450 kg/$mm^2$, 630 kg/$mm^2$, respectively.

Keywords

References

  1. N. Forouzanmelu, F. Karimzadeh and M. H. Enayati: J. Alloys. Compounds., 471 (2009) 93. https://doi.org/10.1016/j.jallcom.2008.03.121
  2. P. Bhattacharya, P. Bellon, R.S. Averback and S. J. Hales: J. Alloys. Compounds., 368 (2004) 187. https://doi.org/10.1016/j.jallcom.2003.08.079
  3. W. Z. Li, W. Gao, D. L. Zhang and Z. H. Cai: Corrosion Sci., 291 (1999) 312.
  4. A. Couret, G. Molenat, J. Galy and M. Thomas: Intermetallics, 16 (2008) 1134. https://doi.org/10.1016/j.intermet.2008.06.015
  5. M. S. El-Eskandarany: J. Alloys Compounds., 305 (2000) 225. https://doi.org/10.1016/S0925-8388(00)00692-7
  6. Fu, L., Cao, L. H. and Fan, Y. S.: Scripta Materialia., 44 (2001) 1061. https://doi.org/10.1016/S1359-6462(01)00668-6
  7. Berger, S., Porat, R. and Rosen, R: Progress Mater. Sci., 42 (1997) 311. https://doi.org/10.1016/S0079-6425(97)00021-2
  8. I. Y. Ko, H. S. Kang, J. M. Doh, J. K. Yoon and I. J. Shon: J.Alloys Compounds, 502 (2010) 10. https://doi.org/10.1016/j.jallcom.2010.04.120
  9. S. K. Bae, I. J. Shon, J. M. Doh, J. K. Yoon and I. Y. Ko: Scripta Mater., 58 (2008) 425. https://doi.org/10.1016/j.scriptamat.2007.10.029
  10. I. J. Shon, D. K. Kim, K. T. Lee and K. S. Nam: Met. Mater. Int., 14 (2008) 593. https://doi.org/10.3365/met.mat.2008.10.593
  11. Z. Shen, M. Johnsson, Z. Zhao and M. Nygren: J. Am. Ceram. Soc., 85 (2002) 1921. https://doi.org/10.1111/j.1151-2916.2002.tb00381.x
  12. J. E. Garay, U. Anselmi-Tamburini, Z. A. Munir, S. C. Glade and P. Asoka-Kumar: Appl. Phys. Lett., 85 (2004) 573. https://doi.org/10.1063/1.1774268
  13. J. R. Friedman, J. E. Garay. U. Anselmi-Tamburini and Z. A. Munir: Intermetallics., 12 (2004) 589. https://doi.org/10.1016/j.intermet.2004.02.005
  14. J. E. Garay, J. E. Garay. U. Anselmi-Tamburini and Z. A. Munir: Acta Mater., 51 (2003) 4487. https://doi.org/10.1016/S1359-6454(03)00284-2
  15. I. Barin: Thermochemical Data of Pure Substances, VCH, New Tork, (1989) 71.
  16. K. Niihara, R. Morena and D. P. H. Hasselman: J. Mater. Sci. Lett., 1 (1982) 12.
  17. X. Wu: Intermetallics, 14 (2006) 1114. https://doi.org/10.1016/j.intermet.2005.10.019