Browse > Article
http://dx.doi.org/10.12989/amr.2016.5.3.181

Effect of milling on the electrical properties of Ba(Fe1/2Ta1/2)O3 ceramic  

Mahto, Uttam K. (Aryabhatta Centre for Nanoscience and Nanotechnology, Aryabhatta Knowledge University)
Roy, Sumit K. (Department of Physics, St. Xavier's College)
Chaudhuri, S. (Department of Physics, St. Xavier's College)
Prasad, K. (Aryabhatta Centre for Nanoscience and Nanotechnology, Aryabhatta Knowledge University)
Publication Information
Advances in materials Research / v.5, no.3, 2016 , pp. 181-192 More about this Journal
Abstract
In this work effect of high energy milling on the structural and electrical properties of $Ba(Fe_{1/2}Ta_{1/2})O_3$ (BFT) ceramic synthesized using standard solid-state reaction method were investigated. X-ray diffraction studies indicated that the unit cell structure for all the samples to be hexagonal (space group: P3m1). FTIR spectra also confirmed the formation of BFT without any new phase. The milled (10 h) BFT ceramic showed the formation of small grain sizes (<$2{\mu}m$) which is beneficial for dielectric applications in high density integrated devices. Besides, the milled (10 h) BFT ceramic sample exhibited superior dielectric properties (enhancement in ${\varepsilon}^{\prime}-value$ and reduction in $tg{\delta}-value$) compared to un-milled one. Impedance analysis indicated the negative temperature coefficient of resistance (NTCR) character. The correlated barrier hopping model (jump relaxation type) is found to successfully explain the mechanism of charge transport in present ceramic samples.
Keywords
$Ba(Fe_{1/2}Ta_{1/2})O_3$; lead-free; structure; perovskite; dielectric constant; FTIR spectroscopy; electroceramic;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Ke, S., Lin, P., Fan, H., Huang, H. and Zeng, X. (2013), "Variable-range-hopping conductivity in high-k $Ba(Fe_{0.5}Nb_{0.5})O_3$ ceramics", J. Appl. Phys., 114(10), 104106-7.   DOI
2 Koops, C. (1951), "On the dispersion of resistivity and dielectric constant of some semiconductors at audio frequencies", Phys. Rev., 83(1), 121-124.   DOI
3 Galasso, F. and Darby, W. (1962), "Ordering of the octahedrally coordinated cation position in the perovskite structure", J. Phys. Chem., 66(1), 131-132.   DOI
4 Kong, L.B., Zhang, T., Ma, J. and Boey, F. (2008), "Progress in synthesis of ferroelectric ceramic materials via high-energy mechanochemical technique", Prog. Mater. Sci., 53(2), 207-322.   DOI
5 Lee, D., Kim, M.G., Ryu, S., Jang, H.M. and Lee, S.G. (2005), "Epitaxially grown La-modified $BiFeO_3$ magnetoferroelectric thin films", Appl. Phys. Lett., 86(22), 222903-222905.   DOI
6 Li, G., Liu, S., Liao, F., Tian, S., Jing, X., Lin, J., Uesu, Y., Kohn, K., Saitoh, K., Terauchi, M., Di, N. and Cheng, Z. (2004a), "The structural and electric properties of the perovskite system $BaTiO_3-Ba(Fe_{1/2}Ta_{1/2})O_3$", J. Solid State Chem., 177(4), 1695-1703.   DOI
7 Li, J., Wang, J., Wuttig, M., Ramesh, R., Wang, N., Ruette, B. and Pyatakov, A.P. (2004b), "Influence of Mn and Nb dopants on electric properties of chemical-solution-deposited $BiFeO_3$ films", Appl. Phys. Lett., 84(24), 5261-5263.   DOI
8 Mishra, A., Choudhary, S.N., Prasad, K., Choudhary, R.N.P. and Murthy, V.R.K. (2012), "Dielectric relaxation in complex perovskite $Ba(Bi_{1/2}Ta_{1/2})O_3$", J. Mater. Sci.: Mater. Electron., 23(1), 185-192.   DOI
9 Phatungthane, T., Rujijanagul, G., Pengpat, K., Eitssayeam, S., Tunkasiri, T., Cotica, L.F., Guo, R. and Bhalla, A.S. (2014), "Dielectric and impedance measurements on $(1-x)Ba(Fe_1/2}Ta_{1/2})O_3-xBa(Zn_{1/3}Ta_{2/3})O_3$ ceramics", Curr. Appl. Phys., 14(12), 1819-1824.   DOI
10 Patel, P.K., Yadav, K.L., Singh, H. and Yadav, A.K. (2014), "Origin of giant dielectric constant and magnetodielectric study in $Ba(Fe_{0.5}Nb_{0.5})O_3$ nanoceramics", J. Alloys Compd., 591, 224-229.   DOI
11 Prasad, K., Bhagat, S., Amarnath, K., Choudhary, S.N. and Yadav, K.L. (2009), "Dielectric relaxation in lead-free perovskite $Ba(Bi_{1/2}Nb_{1/2})O_3$", Phys. Status Solidi A, 206(2), 316-320.   DOI
12 Prasad, K., Bhagat, S., Amarnath, K., Choudhary, S.N. and Yadav, K.L. (2010a), "Electrical conduction in $Ba(Bi_{0.5}Nb_{0.5})O_3$ ceramic: Impedance spectroscopy analysis", Mater. Sci. - Poland, 28(2009), 317-325.
13 Sivasankaran, S., Sivaprasad, K., Narayanasamy, R. and Satyanarayana, P. (2011), "X-ray peak broadening analysis of AA $6061_{100−x}$ - xwt.% $Al_2O_3$ nanocomposite prepared by mechanical alloying", Mater. Char., 62 (7), 661-672.   DOI
14 Prasad, K., Lily, Kumari, K., Chandra, K.P., Yadav, K.L. and Sen, S. (2007a), "Electrical properties of a lead-free perovskite ceramic: $(Na_{0.5}Sb_{0.5})TiO_3$", Appl. Phys. A, 88(2), 377-383.   DOI
15 Prasad, K., Kumari, K. and Yadav, K.L. (2007b), "Hopping type of conduction in $(Na_{0.5}Bi_{0.5})ZrO_3$ ceramic", J. Phys. Chem. Solids, 68(8), 1508-1514.   DOI
16 Raevski, I., Prosandeev, S., Bogatin, A., Malitskaya, M. and Jastrabik, L. (2003), "High dielectric permittivity in $AFe_{1/2}B_{1/2}O_3$ nonferroelectric perovskite ceramics (A = Ba, Sr, Ca; B = Nb, Ta, Sb)", J. Appl. Phys., 93(7), 4130-4136.   DOI
17 Rebuffi, L., Troian, A., Ciancio, R., Carlino, E., Amimi, A., Leonardi, A. and Scardi, P. (2016), "On the reliability of powder diffraction Line Profile Analysis of plastically deformed nanocrystalline systems", Sci. Rep., 6, 20712-20724.   DOI
18 Sahoo, S.K., Agarwal, K., Singh, A.K., Polke, B.G. and Raha, K.C. (2010), "Characterization of ${\gamma}$- and ${\alpha}-Fe_2O_3$ nano powders synthesized by emulsion precipitation-calcination route and rheological behaviour of ${\alpha}-Fe_2O_3$", Int. J. Engg. Sci. Technol., 2(8), 118-126.
19 Tickoo, R., Tandon, R., Bamzai, K. and Kotru, P. (2003), "Dielectric and piezoelectric characteristics of samarium modified lead titanate ceramics", Mater. Sci. Eng.: B, 103(2), 145-151.   DOI
20 Prasad, K., Chandra, K.P., Bhagat, S., Choudhary, S.N. and Kulkarni, A.R. (2010b), "Structural and electrical properties of lead-free perovskite $BaAl_{1/2}Nb_{1/2})O_3$", J. Amer. Ceram. Soc., 93(1), 190-196.   DOI
21 Bochenek, D., Niemiec, P., Szafraniak-Wiza, I., Adamczyk, M. and Skulski, R. (2015), "Preparation and dielectric properties of the lead-free $BaFe_{1/2}Nb_{1/2}O_3$ ceramics obtained from mechanically triggered powder", Eur. Phys. J. B, 88(10), 277-281.   DOI
22 Agranovskaya, A.I. (1960), "Physical-chemical investigation of the formation of complex ferroelectrics with the perovskite structure", Bull. Acad. Sci. USSR, Phys. Ser., 24, 1271-1277.
23 Bhagat, S., AmarNath, K., Chandra, K.P., Singh, R.K., Kulkarni, A.R. and Prasad, K. (2014), "The structural, electrical and magnetic properties of perovskite $(1-x)Ba(Fe_{1/2}Nb_{1/2})O_3-xBaTiO_3$ ceramics", Adv. Mater. Lett., 5, 117-121.   DOI
24 Bhagat, S. and Prasad, K. (2010), "Structural and impedance spectroscopy analysis of $Ba(Fe_{1/2}Nb_{1/2})O_3$ ceramic", Phys. Status Solidi A, 207(5), 1232-1239.   DOI
25 Chung, C.-Y., Chang, Y.-H. and Chen, G.-J. (2004), "Effects of lanthanum doping on the dielectric properties of $Ba(Fe_{0.5}Nb_{0.5})O_3$ ceramic", J. Appl. Phys., 96(11), 6624-6628.   DOI
26 Dutta, A. and Sinha, T.P. (2006), "Dielectric relaxation in Perovskite $Ba(Al_{1/2}Nb_{1/2})O_3$", J. Phys. Chem. Solids, 67(7), 1484-1491.   DOI
27 Deepika, Li, L.H., Glushenkov, A.M., Hait, S.K., Hodgson, P. and Chen, Y. (2014), "High-efficient production of boron nitride nanosheets via an optimized ball milling process for lubrication in oil", Sci. Rep., 4, 7288-7293.
28 Funke, K. (1993), "Jump relaxation in solid electrolytes", Prog. Solid St. Chem., 22(2), 111-115.   DOI
29 Funke, K. (1994), "Jump relaxation model and coupling model - a comparison", J. Non-Cryst. Solids, 172-174, 1215-1221.   DOI
30 Galasso, F., Katz, L. and Ward, R. (1959), "Substitution in the octahedrally coordinated cation positions in compounds of the perovskite type", J. Am. Chem. Soc., 81(4), 820-823.   DOI
31 Gergs, M., Gamal, G. and Massaud, M. (2007), "Dielectric properties, Deby relaxation time and activation energy of $[(Pb_{1-x}Sr_x)_{1-1.5z}La_z]TiO_3$ ceramics", Egypt. J. Solid, 30, 20-35.
32 Giri, P., Bhattacharyya, S., Singh, D.K., Kesavamoorthy, R., Panigrahi, B.K. and Nair, K.G.M. (2007), "Correlation between microstructure and optical properties of ZnO nanoparticles synthesized by ball milling", J. Appl. Phys., 102(9), 093515-8.   DOI
33 Intatha, U., Eitssayeam, S., Wang, J. and Tunkasiri, T. (2010), "Impedance study of giant dielectric permittivity in $BaFe_{0.5}Nb_{0.5}O_3$ perovskite ceramic", Curr. Appl. Phys., 10(1), 21-25.   DOI
34 Jung, W.-H., Lee, J.-H., Sohn, J.-H., Nam, H.-D. and Cho, S.-H. (2002), "Dielectric loss anomaly in $Ba(Fe_{1/2}Ta_{1/2})O_3$ ceramics", Mater. Lett., 56(3), 334-338.   DOI
35 Wang, Z., Chen, X.M., Ni, L., Liu, Y.Y. and Liu, X.Q. (2007b), "Dielectric relaxations in $Ba(Fe_{1/2}Ta_{1/2})O_3$ giant dielectric constant ceramics", Appl. Phys. Lett., 90(10), 102905-102907.   DOI
36 Tiwari, J.P. and Shahi, K. (2007), "Super-linear frequency dependence of ac conductivity of disordered $Ag_2S-Sb_2S_3$ at cryogenic temperatures", Philos. Mag., 87(29), 4475-4500.   DOI
37 Wang, Z., Chen, X.M., Ni, L. and Liu, X.Q. (2007a), "Dielectric abnormities of complex perovskite $Ba(Fe_{1/2}Nb_{1/2})O_3$ ceramics over broad temperature and frequency range", Appl. Phys. Lett., 90(2), 022904-6.   DOI