DOI QR코드

DOI QR Code

Rapid Sintering of FeAl by Pulsed Current Activated Heating and its Mechanical Properties

펄스 전류 활성 가열에 의한 나노구조의 FeAl 급속소결과 기계적 성질

  • Jo, Seung-Hoon (Division of Advanced Materials Engineering, the Research Center of Advanced Materials Development, Chonbuk National University) ;
  • Ko, In-Yong (Division of Advanced Materials Engineering, the Research Center of Advanced Materials Development, Chonbuk National University) ;
  • Doh, Jung-Mann (Advanced Functional Materials Research Center, Korea Institute of Science and Technology) ;
  • Yoon, Jin-Kook (Advanced Functional Materials Research Center, Korea Institute of Science and Technology) ;
  • Shon, In-Jin (Division of Advanced Materials Engineering, the Research Center of Advanced Materials Development, Chonbuk National University)
  • 조승훈 (전북대학교 신소재공학부 신소재 개발 연구센터) ;
  • 고인용 (전북대학교 신소재공학부 신소재 개발 연구센터) ;
  • 도정만 (한국과학기술연구원) ;
  • 윤진국 (한국과학기술연구원) ;
  • 손인진 (전북대학교 신소재공학부 신소재 개발 연구센터)
  • Received : 2010.04.28
  • Published : 2010.07.22

Abstract

Nanopowder of FeAl was synthesized by high energy ball milling. Using the pulsed current activated sintering method, a dense nanostuctured FeAl was consolidated within 2 minutes from mechanically synthesized powders of FeAl and horizontally milled powders of Fe+Al. The grain size and hardness of FeAl sintered from horizontally milled Fe+Al powders and high energy ball milled FeAl powder were 150 nm, 50 nm and $466\;kg/mm^2$, $574\;kg/mm^2$, respectively.

Keywords

Acknowledgement

Supported by : 지식경제부

References

  1. C. T. Liu, E. P. George, P. J. Maziasz, and J. H. Schneibel, Mater. Sci. Eng. A 258, 84 (1998). https://doi.org/10.1016/S0921-5093(98)00921-6
  2. S. C. Deevi and V. K. Sikka, Intermetallics 4, 357 (1996). https://doi.org/10.1016/0966-9795(95)00056-9
  3. M. S. El-Eskandarany, J. Alloys & Compounds 305, 225 (2000). https://doi.org/10.1016/S0925-8388(00)00692-7
  4. L. Fu, L. H. Cao, and Y. S. Fan, Scripta Materialia 44, 1061 (2001). https://doi.org/10.1016/S1359-6462(01)00668-6
  5. I. K. Jeong, J. H. Park, J. M. Doh, K. Y. Kim, I. Y. Ko, and I. J. Shon, J. Kor. Inst. Met. & Mater. 46, 223 (2008).
  6. S. Berger, R. Porat, and R. Rosen, Progress in Materials 42, 311 (1997). https://doi.org/10.1016/S0079-6425(97)00021-2
  7. V. K. Sikka. In, Proceedings of the 5th Annual Conf. on Fossil Energy Materials. Oak Ridge, TN, p.197 (1991).
  8. J. R. Knibloe, R. N. Wright, and V. K. Sikka, In, Andreotti ER, McGreehan PJ, editors. Advanceds in powder metallurgy. Princeton, NJ, Metal powder Industries Federation, p.219 (1990).
  9. S. K Bae, I. J. Shon, J. M Doh, J. K. Yoon, and I. Y. Ko, Scripta Materialia 58, 425 (2008). https://doi.org/10.1016/j.scriptamat.2007.10.029
  10. I. J. Shon, D. K. Kim, K. T. Lee, and K. S. Nam, Met. Mater. Int. 14, 593 (2008). https://doi.org/10.3365/met.mat.2008.10.593
  11. Z. Shen, M. Johnsson, Z. Zhao, and M. Nygren, J. Am. Ceram. Soc. 85, 1921 (2002). https://doi.org/10.1111/j.1151-2916.2002.tb00381.x
  12. J. E. Garay, U. Anselmi-Tamburini, Z. A. Munir, S. C. Glade, and P. Asoka-Kumar, Appl. Phys. Lett. 85, 573 (2004). https://doi.org/10.1063/1.1774268
  13. J. R. Friedman, J. E. Garay. U. Anselmi-Tamburini, and Z. A. Munir, Intermetallics 12, 589 (2004). https://doi.org/10.1016/j.intermet.2004.02.005
  14. J. E. Garay, J. E. Garay. U. Anselmi-Tamburini, and Z. A. Munir, Acta Mater. 51, 4487 (2003). https://doi.org/10.1016/S1359-6454(03)00284-2
  15. C. Suryanarayana and M. Grant Norton, X-ray Diffraction A Practical Approach, Plenum Press, p.213 (1998).
  16. E. Godlewska, S. Szczepanik, R. Mania, J. Krawiarz, and S. Kozinski, Intermetallics 11, 307 (2003). https://doi.org/10.1016/S0966-9795(02)00247-9