• Title/Summary/Keyword: Milk peptide

Search Result 76, Processing Time 0.03 seconds

Separation and Purification of Lipase Inhibitory Peptide from Fermented Milk by Lactobacillus plantarum Q180

  • Kim, Seulki;Lim, Sang-Dong
    • Food Science of Animal Resources
    • /
    • v.40 no.1
    • /
    • pp.87-95
    • /
    • 2020
  • In this study, we separated and purified lipase inhibitory peptide from fermented milk by Lactobacillus plantarum Q180 with the aim of developing a new functional anti-lipase activity yogurt product. L. plantarum 180 was inoculated into 10% reconstituted skimmed milk and incubated at 37℃ until the pH of the culture reached pH 4.4. The lipase activity was measured using porcine pancreatic lipase. The lipase inhibitory peptides were gradually isolated by ultrafiltration, reversed phase column chromatography (RPC), reversed phase high-performance liquid chromatography (RP-HPLC), and gel permeation high-performance liquid chromatography (GP-HPLC) from the fermented milk by L. plantarum Q180. An ODS-AQ column was used for the RPC, a Vydac C18 column for the RP-HPLC, and a Superdex Peptide HR column for the GP-HPLC. The peptide was composed of Asp, Thr, Ile, Ser, Ala, and Gln, and the anti-lipase activity (IC50) was 2,817 ㎍/mL.

Angiotensin-I-Converting Enzyme Inhibitory Peptides in Goat Milk Fermented by Lactic Acid Bacteria Isolated from Fermented Food and Breast Milk

  • Rubak, Yuliana Tandi;Nuraida, Lilis;Iswantini, Dyah;Prangdimurti, Endang
    • Food Science of Animal Resources
    • /
    • v.42 no.1
    • /
    • pp.46-60
    • /
    • 2022
  • In this study, angiotensin-I-converting enzyme inhibitory (ACEI) activity was evaluated in fermented goat milk fermented by lactic acid bacteria (LAB) from fermented foods and breast milk. Furthermore, the potential for ACEI peptides was identified in fermented goat milk with the highest ACEI activity. The proteolytic specificity of LAB was also evaluated. The 2% isolate was inoculated into reconstituted goat milk (11%, w/v), then incubated at 37℃ until pH 4.6 was reached. The supernatant produced by centrifugation was analyzed for ACEI activity and total peptide. Viable cell counts of LAB and titratable acidity were also evaluated after fermentation. Peptide identification was carried out using nano liquid chromatography mass spectrometry (LC-MS/MS), and potential as an ACEI peptide was carried out based on a literature review. The result revealed that ACEI activity was produced in all samples (20.44%-60.33%). Fermented goat milk of Lc. lactis ssp. lactis BD17 produced the highest ACEI activity (60.33%; IC50 0.297±0.10 mg/mL) after 48 h incubation, viable cell counts >8 Log CFU/mL, and peptide content of 4.037±0.27/mL. A total of 261 peptides were released, predominantly derived from casein (93%). The proteolytic specificity of Lc. lactis ssp. lactis BD17 through cleavage on the amino acid tyrosine, leucine, glutamic acid, and proline. A total of 21 peptides were identified as ACEI peptides. This study showed that one of the isolates from fermented food, namely Lc. lactis ssp. lactis BD17, has the potential as a starter culture for the production of fermented goat milk which has functional properties as a source of antihypertensive peptides.

유산균체와 유단백질 유래 Peptide의 면역조절 기능 연구 동향

  • Kim, Cheol-Hyeon
    • 한국유가공학회:학술대회논문집
    • /
    • 2008.11b
    • /
    • pp.39-50
    • /
    • 2008
  • The immune system of mammals includes a complex array of cells and molecules, which interact to provide protection from pathogenic microorganisms. The beneficial role played by lactic acid bacteria and milk-derived peptide in the humans, including the effects on the immune system, has been extensively reported. They are present in dairy products and are frequently used as nutraceuticals to some improve some biological functions in the host. The activation of the systemic and secretory immune response by lactic acid bacteria and milk-derived peptide requires many complex interactions among th different constituents of the intestinal ecosystem. The aim of this review was to make the point about the immunological potential of lactic acid bacteria and milk-derived peptide.

  • PDF

Identification and Characterization of a Novel Antioxidant Peptide from Bovine Skim Milk Fermented by Lactococcus lactis SL6

  • Kim, Sang Hoon;Lee, Ji Yoon;Balolong, Marilen P.;Kim, Jin-Eung;Paik, Hyun-Dong;Kang, Dae-Kyung
    • Food Science of Animal Resources
    • /
    • v.37 no.3
    • /
    • pp.402-409
    • /
    • 2017
  • A novel peptide having free radical scavenging activity was separated, using an on-line high-performance liquid chromatography (HPLC) - ABTS screening method, from bovine skim milk fermented by Lactococcus lactis SL6 (KCTC 11865BP). It was further purified using reverse phase-HPLC (RP-HPLC) and sequenced by RP-HPLC-tandem mass spectrometry. The amino acid sequence of the identified peptide was determined to be Phe-Ser-Asp-Ile-Pro-Asn-Pro-Ile-Gly-Ser-Glu-Asn-Ser-Glu-Lys-Thr-Thr-Met-Pro-Leu-Trp (2,362 Da), which is corresponding to the C-terminal fragment of bovine ${\alpha}_{s1}$-casein (f179-199). The hydroxyl radicals scavenging activity ($IC_{50}$ $28.25{\pm}0.96{\mu}M$) of the peptide chemically synthesized based on the MS/MS data showed a slightly lower than that of the natural antioxidant Trolox ($IC_{50}$ $15.37{\pm}0.52{\mu}M$). Furthermore, derivatives of the antioxidant peptide were synthesized. The antioxidative activity of the derivatives whose all three proline residues replaced by alanine significantly decreased, whereas replacement of two proline residues in N-terminal region did not affect its antioxidative activity, indicating that $3^{rd}$ proline in C-terminal region is critical for the antioxidative activity of the peptide identified in this study. In addition, N-terminal region of the antioxidant peptide did not show its activity, whereas C-terminal region maintained antioxidative activity, suggesting that C-terminal region of the peptide is important for antioxidative activity.

Anti-diabetic peptides derived from milk proteins (우유단백질 유래 혈당 조절 기능성 펩타이드)

  • Kim, Seonyoung;Imm, Jee-Young
    • Food Science and Industry
    • /
    • v.51 no.4
    • /
    • pp.302-312
    • /
    • 2018
  • Bioactive peptides generated from milk proteins play an important role in the prevention and alleviation of diabetes. Whey proteins possess direct insulinotropic effect by amino acids (especially branch chain amino acids) produced through its gastrointestinal digestion. Additionally, blood glucose level can be lowered by gut hormone which called incretin [glucose dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1)]. However, physiological effects of incretin readily disappeared by dipeptidyl peptidase-4 (DPP-4) causing degradation of GLP-1. Several DPP-4 inhibitors are currently used as therapeutic medicines for the treatment of type II diabetes. More than 60 natural peptide (2-14 amino acids) DPP-4 inhibitors were identified in milk proteins. Peptide DPP-4 inhibitors act as substrate inhibitor and delay breakdown of GLP-1 both in vitro and in vivo. This review summarizes nutritional quality of milk proteins, absorption and mode of action of bioactive peptides, and finally up-to-dated knowledge on DPP-4 inhibitory peptides derived from milk proteins.

Identification of Growth Stimulatory Compound in the Mixed Culture of Lactobacillus helveticus YM-1 and Streptococcus thermophilus CH-1 in Milk (Lactobacillus helveticus YM-1 과 Streptococcus thermophilus CH-1의 혼합배양액 중에 함유된 생육촉진물질의 확인)

  • Yoon, Sung-Sik;Yu, Ju-Hyun
    • Korean Journal of Food Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.492-496
    • /
    • 1986
  • A compound stimulatory to the growth of S. thermophilus CH-1 was isolated from the cell-free filtrate of L. helveticus YM-1 in milk medium. The stimulant was identified as a peptide with a molecular weight of approximately 5000 and exhibited positive ninhydrin reaction. Some kinds of amino acids confirmed as aspartic acid, alanine, valine, glutamic acid, lysine, proline, leucine were rich in the stimulatory peptide hydrolysate. Among them, glutamic acid was most abundant. Judging from bioautographic results, glutamic acid and phenylalanine were expected to exert an important role for the stimulation.

  • PDF

Comparison of Antioxidant Activities of Hydrolysates of Domestic and Imported Skim Milk Powders Treated with Papain

  • Ha, Go Eun;Chang, Oun Ki;Han, Gi Sung;Ham, Jun Sang;Park, Beom-Young;Jeong, Seok-Geun
    • Food Science of Animal Resources
    • /
    • v.35 no.3
    • /
    • pp.360-369
    • /
    • 2015
  • Milk proteins have many potential sequences within their primary structure, each with a specific biological activity. In this study, we compared and investigated the bioactivities of hydrolysates of the domestic (A, B) and imported (C, D) skim milk powders generated using papain digestion. MALDI-TOF analysis revealed that all milk powder proteins were intact, indicating no autolysis. Electrophoretic analysis of hydrolysates showed papain treatment caused degradation of milk proteins into peptides of various size. The antioxidant activity of the hydrolysates, determined using 2,2-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and total phenolic contents (TPC) assays, increased with incubation times. In all skim milk powders, the antioxidant activities of hydrolysates were highest following 24 h papain treatment (TPC: A, 196.48 μM GE/L; B, 194.52 μM GE/L; C, 194.76 μM GE/L; D, 163.75 μM GE/L; ABTS: A, 75%; B, 72%; C, 72%; D, 57%). The number of peptide derived from skim milk powders, as determined by LC-MS/MS, was 308 for A, 283 for B, 208 for C, and 135 for D. Hydrolysate A had the highest antioxidant activity and the most potential antioxidant peptides amongst the four skim milk powder hydrolysates. A total of 4 β-lactoglobulin, 4 αs1-casein, and 56 β-casein peptide fragments were identified as potential antioxidant peptides in hydrolysate A by LC-MS/MS. These results suggest that domestic skim milk could have applications in various industries, i.e., in the development of functional foods.

Antioxidant Activity of Low Molecular Peptides Derived from Milk Protein (유단백질 가수분해에 의해 생성된 저분자 Peptides의 항산화 활성)

  • Woo, Sung-Ho;Jhoo, Jin-Woo;Kim, Gur-Yoo
    • Food Science of Animal Resources
    • /
    • v.29 no.5
    • /
    • pp.633-639
    • /
    • 2009
  • The principal objective of the current study was to prepare low molecular weight peptides from milk proteins using enzymatic hydrolysis techniques, in an effort to assess the antioxidant activity of these peptides. The casein and whey proteins isolated from fresh milk were treated with several proteolytic enzymes, such as chymotrypsin, pepsin, and trypsin and the resulting low molecular weight peptides were collected by TCA precipitation. Their identity was confirmed by SDS-PAGE analysis. The hydrolysis experiments indicated that whey protein treated with chymotrypsin displayed the highest degree of protein hydrolysis. The antioxidant activity of milk protein hydrolysates was determined by measuring the ABTS-radical scavenging activity. The results of these experiments showed that hydrolysis of the milk protein was effective in increasing their antioxidant activities. Especially, the tryptic digested casein displayed the highest radical scavenging activity (80.7%). The hydrolyzed low molecular weight milk protein was isolated using an ultrafiltration membrane. The casein hydrolysate passed through a membrane with molecular weight cut-off (MWCO) of 3 kDa displayed the strongest antioxidant activity.

Functional Properties of Milk (우유의 기능성)

  • Jin, Hyun-Seok
    • Journal of Dairy Science and Biotechnology
    • /
    • v.17 no.1
    • /
    • pp.50-57
    • /
    • 1999
  • Milk is a first food for as long as the mammalian race has existed. A characteristic unique to mammal is their ability to secrete milk as a source of nutrients and immunological protection for their young. From a nutitrional viewpoint, milk has heen described as nature's most perfect food, owing mainly to its biological role as the only source of nutrition for the infant mammal. Milk is estimated to contain more than 100,000 molecular species, However, the average contents of milk can be simplified to 3.4% fat, 3.1% protein (80% casein protein and 20% whey protein), 4.5% lactose, and 0.7% ash. Chemically, milk is a very complex fluid rich in nutrients, antibodies, growth factors, antimicrobial components etc. This report will discuss functional properties of milk components, such as lactoferrin, opoid peptide, CPP, cGMP and sialic acid etc.

  • PDF

Effect of Milk Peptide on Bone Metabolism (우유단백질 유래 펩타이드가 골 대사에 미치는 영향)

  • Imm, Jee-Young
    • 한국유가공학회:학술대회논문집
    • /
    • 2007.09a
    • /
    • pp.39-47
    • /
    • 2007
  • Bone undergoes continuous remodeling throughout the life and bone health is governed by the balance of bone resorbing osteoclast and bone forming osteoblast. Bone resorption is reflected in tartrate resistant acid phosphatase, pyridinium cross link and collagen telopeptide, whereas bone formation activity can be expressed as bone specific alkaline phosphatase, osteocalcin and procollagen I extension peptide. Milk basic protein and lactoferrin have been reported as active proteins to modulating bone metabolism. In addition to these proteins, some bioactive milk peptides released during lactic fermentation may provide beneficial effect on bone metabolism. The effects of fermented products of Lactobacillus casei ATCC 393 on bone metabolism were investigated using a variety of biochemical markers in osteoblastic MC3T3-E1 cells and ovariectomized rats. Based on the results, the fermented products of Lactobacillus casei ATCC 393 played an functional role in bone metabolism by suppressing bone resorption and by increasing bone formation.

  • PDF