DOI QR코드

DOI QR Code

우유단백질 유래 혈당 조절 기능성 펩타이드

Anti-diabetic peptides derived from milk proteins

  • 김선영 (국민대학교 식품영양학과) ;
  • 임지영 (국민대학교 식품영양학과)
  • Kim, Seonyoung (Department of Foods and Nutrition, Kookmin University) ;
  • Imm, Jee-Young (Department of Foods and Nutrition, Kookmin University)
  • 투고 : 2018.11.27
  • 심사 : 2018.12.03
  • 발행 : 2018.12.31

초록

우유 단백질과 같은 식이 단백질은 분해되기 전에는 대사 조절을 위한 생물학적인 활성을 나타내지 않으나 장에서의 소화과정이나 단백질 분해 효소, 또는 미생물 발효 과정을 통하여 저분자의 펩타이드로 분해되어 수용체 결합을 통하여 생체조절기능을 발휘하거나, 체내 대사의 조절에 관여하는 다양한 효소의 활성을 억제함으로써 기능을 발휘하기도 한다. 우유단백질의 섭취에 의한 혈당 감소 효과는 여러 연구자에 의하여 확인되었으며, 그 작용 기전은 주로 분지사슬 아미노산에 의한 인슐린 분비촉진 기전과 음식물의 소화 과정 중 위장관에서 췌장에서 인슐린 분비 촉진, glucagon의 분비를 감소시켜 혈당을 감소시키는 역할을 담당하는 내분비 호르몬의 일종인 GLP-1의 작용에 영향을 미치는 기전을 생각할 수 있다. 생리적 환경에서 GLP-1은 GLP-1을 가수분해하여 불활성화시키는 DPP-4에 의하여 빠르게 분해되어 생물학적 활성을 소실하기 때문에 DPP-4 억제제는 제 2형 당뇨의 새로운 치료 방법으로써 주목을 받고 있다. DPP-4의 억제 효능을 가진 다수의 기능성 펩타이드가 우유단백질의 분해에 의하여 생성됨이 보고되었으며 그 효능이 in vitro 연구는 물론 동물 모델을 이용한 연구에서도 증명되었다. 이상의 연구 결과를 근거로 할 때 우유 단백질 유래 DPP-4 억제 펩타이드는 인체 적용 연구를 통하여 혈당 조절에 도움을 주는 기능성 소재로 개발될 수 있는 충분한 가능성을 가지고 있다고 판단된다.

Bioactive peptides generated from milk proteins play an important role in the prevention and alleviation of diabetes. Whey proteins possess direct insulinotropic effect by amino acids (especially branch chain amino acids) produced through its gastrointestinal digestion. Additionally, blood glucose level can be lowered by gut hormone which called incretin [glucose dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1)]. However, physiological effects of incretin readily disappeared by dipeptidyl peptidase-4 (DPP-4) causing degradation of GLP-1. Several DPP-4 inhibitors are currently used as therapeutic medicines for the treatment of type II diabetes. More than 60 natural peptide (2-14 amino acids) DPP-4 inhibitors were identified in milk proteins. Peptide DPP-4 inhibitors act as substrate inhibitor and delay breakdown of GLP-1 both in vitro and in vivo. This review summarizes nutritional quality of milk proteins, absorption and mode of action of bioactive peptides, and finally up-to-dated knowledge on DPP-4 inhibitory peptides derived from milk proteins.

키워드

참고문헌

  1. Adessi C, Soto C. Converting a peptide into a drug: Strategies to improve stability and bioavailability. Curr. Med. Chem. 9: 963-978 (2002) https://doi.org/10.2174/0929867024606731
  2. Akhavan T, Luhovyy BL, Brown PH, Cho CE, Anderson GH. Effect of premeal consumption of whey protein and its hydrolysate on food intake and postmeal glycemia and insulin responses in young adults. Am. J. Clin. Nutr. 91: 966-975 (2010) https://doi.org/10.3945/ajcn.2009.28406
  3. Appuhamy JA, Knoebel NA, Nayananjalie WA, Escobar J, Hanigan MD. Isoleucine and leucine independently regulate mTOR signaling and protein synthesis in MAC-T cells and bovine mammary tissue slices. J. Nutr. 142: 484-491 (2012) https://doi.org/10.3945/jn.111.152595
  4. Boirie Y, Dangin M, Gachon P, Vasson MP, Maubois JL, Beaufrere B. Slow and fast dietary proteins differently modulate postprandial protein accretion. Proc. Natl. Acad. Sci. USA 94: 14930-14935 (1997) https://doi.org/10.1073/pnas.94.26.14930
  5. Brubaker PL, Drucker DJ. Minireview: glucagon-like peptides regulate cell proliferation and apoptosis in the pancreas, gut, and central nervous system. Endocrinology 145: 2653-2659 (2004) https://doi.org/10.1210/en.2004-0015
  6. Calbet JA, Holst JJ. Gastric emptying, gastric secretion and enterogastrone response after administration of milk proteins or their peptide hydrolysates in humans. Eur. J. Nutr. 43: 127-139 (2004) https://doi.org/10.1007/s00394-004-0448-4
  7. Cho YM, Fujita Y, Kieffer TJ. Glucagon-like peptide-1: glucose homeostasis and beyond. Annu. Rev. Physiol. 76: 535-559 (2014) https://doi.org/10.1146/annurev-physiol-021113-170315
  8. Daniel H. Molecular and integrative physiology of intestinal peptide transport. Annu. Rev. Physiol. 66: 361-384 (2004) https://doi.org/10.1146/annurev.physiol.66.032102.144149
  9. DeFronzo RA, Ferrannini E. Insulin resistance: a multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease. Diabetes Care 14: 173-194 (1991)
  10. Drucker DJ, Nauck MA. The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet 368:1696-1705 (2006) https://doi.org/10.1016/S0140-6736(06)69705-5
  11. Dullius A, Goettert MI, de Souza CFV. Whey protein hydrolysates as a source of bioactive peptides for functional foods-Biotechnological facilitation of industrial scale-up. J. Func. Foods 42: 58-74 (2018) https://doi.org/10.1016/j.jff.2017.12.063
  12. Fernandez A, Riera F. ${\beta}$-Lactoglobulin tryptic digestion: A model approach for peptide release. Biochem. Eng. J. 70: 88-96 (2013) https://doi.org/10.1016/j.bej.2012.10.001
  13. FitzGerald RJ, Meisel H. Milk protein-derived peptide inhibitors of angiotensin-I-converting enzyme. Br. J. Nutr. 84: 33-37 (2000) https://doi.org/10.1017/S0007114500002221
  14. Frid AH, Nilsson M, Holst JJ, Bjorck IM. Effect of whey on blood glucose and insulin responses to composite breakfast and lunch meals in type 2 diabetic subjects. Am. J. Clin. Nutr. 82: 69-75 (2005) https://doi.org/10.1093/ajcn/82.1.69
  15. Gilbert ER, Wong EA, Webb Jr. KE. Peptide absorption and utilization: Implications for animal nutrition and health. J. Anim. Sci. 86: 2135-2155 (2008) https://doi.org/10.2527/jas.2007-0826
  16. Gooben K, Graber S. Longer term safety of dipeptidyl peptidase-4 inhibitors in patients with type 2 diabetes mellitus: systematic review and meta-analysis. Diabetes Obes. Metab. 14: 1061-1072 (2012) https://doi.org/10.1111/j.1463-1326.2012.01610.x
  17. Guo HY, Pang K, Zhang XY, Zhao L, Chen SW, Dong ML, Ren FZ. Composition, physicochemical properties, nitrogen fraction distribution, and amino acid profile of donkey milk. J Dairy Sci. 90: 1635-1643 (2007) https://doi.org/10.3168/jds.2006-600
  18. Halton TL, Hu FB. The effects of high protein diets on thermogenesis, satiety and weight loss: a critical review. J. Am. Coll. Nutr. 23: 373-85 (2004) https://doi.org/10.1080/07315724.2004.10719381
  19. Hruby VJ, Balse PM. Conformational and topographical considerations in designing agonist peptidomimetics from peptide leads. Curr. Med. Chem. 7: 945-970 (2000) https://doi.org/10.2174/0929867003374499
  20. Hsieh CH, Wang TY, Hung CC, Jao CL, Hsieh YL, Wu SX, Hsu KC. In silico, in vitro and in vivo analyses of dipeptidyl peptidase IV inhibitory activity and the antidiabetic effect of sodium caseinate hydrolysate. Food Func. 7: 1122-1128 (2016) https://doi.org/10.1039/C5FO01324K
  21. Hunziker D, Hennig M, Peters JU. Inhibitors of dipeptidyl peptidase IV - recent advances and structural views. Curr. Topics Med. Chem. 5: 1623-1637 (2005) https://doi.org/10.2174/156802605775009685
  22. Lacroix IME, Li-Chan ECY. Dipeptidyl peptidase-IV inhibitory activity of dairy protein hydrolysates. Int. Dairy J. 25: 97-102 (2012) https://doi.org/10.1016/j.idairyj.2012.01.003
  23. Lara-Villoslada F, Olivares M, Xaus J. The balance between caseins and whey proteins in cow's milk determines its allergenicity. J. Dairy Sci. 88: 1654-1660 (2005) https://doi.org/10.3168/jds.S0022-0302(05)72837-X
  24. Layman DK, Evans EM, Erickson D, Seyler J, Weber J, Bagshaw D, Griel A, Psota T, Kris-Etherton P. A moderate protein diet produces sustained weight loss and long-term changes in body composition and blood lipids in obese adults. J. Nutr. 139: 514-521 (2009) https://doi.org/10.3945/jn.108.099440
  25. Layman DK, Walker DA. Potential importance of leucine in treatment of obesity and the metabolic syndrome. J. Nutr. 136: 319S-23S (2006) https://doi.org/10.1093/jn/136.1.319S
  26. Marya, Khan H, Nabavi SM, Habtemariam S. Anti-diabetic potential of peptides: future prospects as therapeutic agents. Life Sci. 193: 153-158 (2018) https://doi.org/10.1016/j.lfs.2017.10.025
  27. Mennella C, Visciano M, Napolitano A, Del Castillo MD, Fogliano V. Glycation of lysine-containing dipeptides. J. Pept. Sci.12: 291-296 (2006) https://doi.org/10.1002/psc.722
  28. Mentlein R. Therapeutic assessment of glucagons-like peptide-1 agonists compared with dipeptidyl peptidase IV inhibitors as potential antidiabetic drugs. Expert Opin. Invest. Drugs 14: 57-64 (2005) https://doi.org/10.1517/13543784.14.1.57
  29. Nielsen, SD, Beverly, RL, Qu Y, Dallas DC. Milk bioactive peptide database: A comprehensive database of milk protein-derived bioactive peptides and novel visualization. Food Chem. 232: 673-682 (2017) https://doi.org/10.1016/j.foodchem.2017.04.056
  30. Nilsson M, Holst JJ, Bjorck IM. Metabolic effects of amino acid mixtures and whey protein in healthy subjects: studies using glucose-equivalent drinks. Am. J. Clin. Nutr. 85: 996-1004 (2007) https://doi.org/10.1093/ajcn/85.4.996
  31. Nilsson M, Stenberg M, Frid AH, Holst JJ, Bjorck IM: Glycemia and insulinemia in healthy subjects after lactose-equivalent meals of milk and other food proteins: the role of plasma amino acids and incretins. Am. J. Clin. Nutr. 80: 1246-1253 (2004) https://doi.org/10.1093/ajcn/80.5.1246
  32. Nongonierma AB, FitzGerald RJ. The scientific evidence for the role of milk protein-derived bioactive peptides in humans: A review. J. Func. Foods 17: 640-656 (2015) https://doi.org/10.1016/j.jff.2015.06.021
  33. Nongonierma AB, FitzGerald RJ. An in silico model to predict the potential of dietary proteins as sources of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides. Food Chem. 165: 489-498 (2014a) https://doi.org/10.1016/j.foodchem.2014.05.090
  34. Nongonierma AB, FitzGerald RJ. Susceptibility of milk protein-derived peptides to dipeptidyl peptidase IV (DPP-IV) hydrolysis. Food Chem. 145: 845-852 (2014b) https://doi.org/10.1016/j.foodchem.2013.08.097
  35. Nongonierma AB, FitzGerald RJ. Dipeptidyl peptidase IV inhibitory properties of a whey protein hydrolysate: Influence of fractionation, stability to simulated gastrointestinal digestion and food-drug interaction. Int. Dairy J. 32: 33-39 (2013b) https://doi.org/10.1016/j.idairyj.2013.03.005
  36. Ohnuma K, Takahashi N, Yamochi T, Hosono O, Dang NH, Morimoto C. Role of CD26/dipeptidyl peptidase IV in human T cell activation and function. Front Biosci. 13: 2299-2310 (2008) https://doi.org/10.2741/2844
  37. Pal S, Ellis V. The acute effects of four protein meals on insulin, glucose, appetite and energy intake in lean men. Br. J. Nutr. 104: 1241-1248 (2010) https://doi.org/10.1017/S0007114510001911
  38. Petersen BL, Ward LS, Bastian ED, Jenkins AL, Campbell J, Vuksan V. A whey protein supplement decreases post-prandial glycemia. Nutr. J. 8: 47 (2009) https://doi.org/10.1186/1475-2891-8-47
  39. Portha B, Tourrel-Cuzin C, Movassat J. Activation of the GLP-1 receptor signaling pathway: a relevant strategy to repair a deficient beta-cell mass. Exp. Diabetes Res. Article ID 376509 doi:10.1155/2011/376509 (2011)
  40. Pripp AH, Ardo Y. Modelling relationship between angiotensin-(I)-converting enzyme inhibition and the bitter taste of peptides. Food Chem. 102: 880-888 (2007) https://doi.org/10.1016/j.foodchem.2006.06.026
  41. Russell-Jones D, Gough S. Recent advances in incretin-based therapies. Clin. Endocrinol. 77: 489-499 (2012)
  42. Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res. Clin. Pract. 87: 4-14 (2010) https://doi.org/10.1016/j.diabres.2009.10.007
  43. Thoma R, Loffler B, Stihle M, Huber W, Ruf A, Hennig M. Structure basis of proline-specific exopeptidase activity as observed in human dipeptidyl peptidase-IV. Structure, 11: 947-959 (2003)
  44. Toft-Nielsen MB, Damholt MB, Madsbad S, Hilsted LM, Hughes TE, Michelsen BK, Holst JJ. Determinants of the impaired secretion of glucagon-like peptide-1 in Type 2 diabetic patients. J. Clin. Endocrinol. Metab. 86: 3717-3723 (2001) https://doi.org/10.1210/jcem.86.8.7750
  45. Udenigwe CC, Fogliano V. Food matrix interaction and bioavailability of bioactive peptides: Two faces of the same coin? J. Func. Foods 35: 9-12 (2017) https://doi.org/10.1016/j.jff.2017.05.029
  46. Wada Y, Lonnerdal B. Effects of different industrial heating processes of milk on site-specific protein modifications and their relation to in vitro and in vivo digestibility. J. Agric. Food Chem. 62: 4175-4185 (2014). https://doi.org/10.1021/jf501617s
  47. Walzem RL, Dillard CJ, German JB. Whey components: Millennia of evolution create functionalities for mammalian nutrition: What we know and what we may be overlooking. Crit. Rev. Food Sci. Nutr. 42: 353-375 (2002) https://doi.org/10.1080/10408690290825574
  48. Wang JH, Liu YL, Ning JH, Yu NJ, Li XH, Wang FX. Is the structural diversity of tripeptides sufficient for developing functional food additives with satisfactory multiple bioactivities? J. Mol. Struc. 1040: 164-170 (2013) https://doi.org/10.1016/j.molstruc.2013.03.004
  49. Yang J, Chi Y, Burkhardt BR, Guan Y, Wolf BA. Leucine metabolism in regulation of insulin secretion from pancreatic beta cells. Nutr Rev. 68: 270-279 (2010) https://doi.org/10.1111/j.1753-4887.2010.00282.x
  50. Zeng Z, Luo J, Zuo F, Zhang Y, Ma H, Chen S. Screening for potential novel probiotic Lactobacillus strains based on high dipeptidyl peptidase IV and ${\alpha}$-glucosidase inhibitory activity. J. Func. Food 20: 486-495 (2016) https://doi.org/10.1016/j.jff.2015.11.030