In this study, the Mild slope equation is extended to both rapidly varying topography and nonlinear waves, using the Hamiltonian principle. It is shown that this equation is equivalent to the modified mild-slope equation (Kirby and Misra, 1998) for small amplitude wave, and it is the same form with the nonlinear mild-slope equation (Isobe, 1994) for slowly varying bottom topography. Comparing its numerical solutions with the results of some hydraulic experiments, there is good agreement between them.
An efficient numerical model of the modified mild slope equation, based on the robust iterative method is presented. The model developed is verified against other numerical experimental results, related to wave reflection from an arc-shaped bar and wave transformation over a circular shoal. The results show that the modified mild slope equation model is capable of producing accurate results for wave propagation in a region where water depth varies substantially, while the conventional mild slope equation model yeilds large errors, as the mild slope assumption is violated.
완경사 파랑식의 유도에 Galerkin방법을 사용하여 수심 의존함수에 대한 Sturm-Liouville 미분식을 엄밀하게 구성하였다. 구한 방정식의 종속변수에 대한 전형적인 변수변환으로 수심, 해저경사 그리고 해저곡률에 대한 항들로 구성된 변형 Helmholtz식을 얻었다. 수치실험을 통해 이 항들이 지형에 의한 파랑변형에 주요한 역할을 보이고 이들의 상대적인 크기에 의해 수정 완경사 파랑식(MMSE)에 비해 완경사 파랑식(MSE)의 적용성이 제한됨을 입증하였다.
본 연구에서 Euler-Lagrange 식을 사용하여 속도포텐셜로 표현되는 확장형 완경사방정식을 유도하였다. 먼저, Euler-Lagrange 식을 사용하여 흐름함수로 표현된 확장형 완경사방정식을 유도한 Kim과 Bai(2004)의 유도과정을 따라가면서 속도 표텐셜로 표현된 확장형 완경사방정식과의 관계를 찾았다. 속도포텐셜로 표현된 Euler-Lagrange 식을 찾아낸 다음 고차의 수심변화 항을 유도하였다. 본 연구에서 유도된 확장형 완경사방정식은 기존의 식인 Massel(1993)의 식과 Chamberlain과 Porter(1995)의 식과 정확히 일치하였다. 본 연구의 연구 성과는 확장형 완경사방정식의 유도 방법을 새로 제시하여 해안공학의 영역을 넓히는데 의의가 있다.
최근 몇몇 연구자들이 서로 다른 방법을 이용하여 수정 완경사방정식을 개발하였는데, 이는, Berkhoff 의 완경사방정석과 비교해 볼 때, 바닥 경사의 제곱 및 바닥 곡율에 비례하는 항들을 추가로 포함하고 있다. 이 식을 검토한 결과, 천이해역에서는 두 항들이 다같이 중요하지만, 천해에서는 바닥 경사 제곱항의 영향은 중요한 반면 바닥 곡률항의 영향은 작아짐을 보였다. 이 항들의 중요성을 좀더 면밀히 검토하기 위하여, 일정 사면, 비일정사면 및 주기성을 갖는 물결진 바닥으로부터의 파의 반사 문제에 대하여 수정 완경사방정식과 Berkhoff의 완경사방정식을 적용하였다. 바닥 경사만을 생각할 때, 완경사방정식이 지금까지 그 적용 한계로 알려져 왔던 1:3보다 더급한 1:1의 경사까지 정확한 결과를 나타냄을 보였다. 또한, 비교적 변화가 적은 해저면 위에서의 파의 전파를 모의할 때는 바닥 곡률항만이 중요한 역할을 하지만, 바닥 경사가 작지 않은 경우에는 보다 정확한 결과를 얻기 위하여 바닥 경사의 제곱항도 포함시켜야 함을 보였다.
In this study, Mild slope equation is extended to both of rapidly varying topography and nonlinear waves in a Hamiltonian formulation. It is shown that its linearzed form is the same as the modified mild-slope equation proposed by Kirby and Misra(1998) And assuming that the bottom slopes are very slowly, it is the equivalent with nonlinear mild-slope equation proposed by Isobe(]994) for the monochromatic wave. Using finite-difference method, it is solved numerically and verified, comparing with the results of some hydraulic experiments. A good agreement between them is shown.
축대칭 함몰지형 위를 통과하는 파의 변형에 관한 확장형 완경사 방정식의 해석해를 유도하였다. 함몰지형내의 수심은 함몰지형의 중심으로부터의 거리의 멱에 비례하여 변화된다. 지배방정식은 변수분리법을 이용하여 상미분방정식으로 변환되었으며 Hunt(1979)의 근사식을 이용하여 계수들을 파속과 군속도의 항으로 이뤄진 양함수의 형태로 나타냈다. 확장형 완경사 방정식의 바닥의 곡률과 경사의 제곱으로 이뤄진 항은 멱급수형태로 변환하였다. 마지막으로 Frobenius 급수를 사용하여 확장형 완경사 방정식의 해석해를 유도하였다. 유도된 해석해는 FEM으로 도출된 수치해와 기존의 완경사 방정식의 해석해와 비교하여 검증하였다.
Since Berkhoff proposed the mild-slope equation in 1972, it has widely been used for calculation of shallow water wave transformation. Recently, it was extended to give an extended mild-slope equation, which includes the bottom slope squared term and bottom curvature term so as to be capable of modeling wave transformation on rapidly varying topography. These equations were derived by integrating the Laplace equation vertically. In the present study, we develop a finite element model to solve the Laplace equation directly while keeping the same computational efficiency as the mild-slope equation. This model assumes the vertical variation of wave potential as a cosine hyperbolic function as done in the derivation of the mild-slope equation, and the Galerkin method is used to discretize . The computational domain was discretized with proper finite elements, while the radiation condition at infinity was treated by introducing the concept of an infinite element. The upper boundary condition can be either free surface or a solid structure. The applicability of the developed model was verified through example analyses of two-dimensional wave reflection and transmission. .
완경사 방정식을 에너지 보존식으로부터 직접 유도하였으며 에너지 보존식과 Green's first and second identities와의 관계를 분명히 밝혔다. 파랑-흐름 상호작용 시의 타원형 완경사 방정식이 Berkhoff (1972)에 의해서 유도된 흐름이 없는 경우와 같은 형태를 갖는다는 것이 제시되었으며, 또한 해석적인 해를 통해 물리적 특성이 조사되었다.
천해역의 파랑을 추산하기 위한 포물형 근사식에 대해 기존 모형을 도출할 수 있는 일반화된 모형을 제시하고 이를 수정 완경사 파랑식에 대한 포물형 근사식으로 확장하였다. 제시한 수치모형을 Berkhoff et al.(1982)의 수리모형 실험과 비교하였으며 이 경우에는 기존 포물형 근사모형과 수정 포물형 근사모형의 결과가 거의 같으며 수리실험 결과와 아주 잘 일치하는 것으로 나타났다. 따라서 계산이 빠르고 안정성이 높은 기존 포물형 근사식은 천해역의 파랑 추산에 유용한 도구라 판단된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.