• Title/Summary/Keyword: Mild steel

Search Result 390, Processing Time 0.025 seconds

Evaluating seismic demands for segmental columns with low energy dissipation capacity

  • Nikbakht, Ehsan;Rashid, Khalim;Mohseni, Iman;Hejazi, Farzad
    • Earthquakes and Structures
    • /
    • v.8 no.6
    • /
    • pp.1277-1297
    • /
    • 2015
  • Post-tensioned precast segmental bridge columns have shown high level of strength and ductility, and low residual displacement, which makes them suffer minor damage after earthquake loading; however, there is still lack of confidence on their lateral response against severe seismic loading due in part to their low energy dissipation capacity. This study investigates the influence of major design factors such as post-tensioning force level, strands position, columns aspect ratio, steel jacket and mild steel ratio on seismic performance of self-centring segmental bridge columns in terms of lateral strength, residual displacement and lateral peak displacement. Seismic analyses show that increasing the continuous mild steel ratio improves the lateral peak displacement of the self-centring columns at different levels of post-tensioning (PT) forces. Such an increase in steel ratio reduces the residual drift in segmental columns with higher aspect ratio more considerably. Suggestions are proposed for the design of self-centring segmental columns with various aspect ratios at different target drifts.

An Experimental Study on Block Shear Strength of Carbon Steel Fillet Welded Connection with Base Metal Fracture (탄소강 용접접합부의 모재블록전단내력에 관한 실험적 연구)

  • Lee, Hwa-Young;Hwang, Bo-kyung;Lee, Hoo-Chang;Kim, Tea-Soo
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.1
    • /
    • pp.11-18
    • /
    • 2018
  • An experimental study on the ultimate behaviors of the mild carbon steel (SPHC) fillet-welded connection is presented in this paper. Seven specimens were fabricated by the shielded metal arc welding (SMAW). All specimens failed by typical block shear fracture in the base metal of welded connections not weld metal. Block shear fracture observed in the base metal of welded connection is a combination of single tensile fracture transverse to the loading direction and two shear fractures longitudinal to the loading direction. Test strengths were compared with strength predictions by the current design equations and suggested equations by previous researchers. It is known that current design specifications (AISC2010 and KBC2016) and Oosterhof & Driver's equation underestimated overly the ultimate strength of the welded connection by on average 44%, 31%, respectively and prediction by Topkaya's equation was the closest to the test results. Consequently, modified equation is required to be proposed considering the stress triaxiality effect and material property difference on the block shear strength for base metal fracture in welded connections fabricated with mild carbon steel.

An Experimental Study on the Characteristics of Steel Hysteretic Dampers with Pin-type Elements (실험을 통한 핀타입(pin-type) 강재이력댐퍼의 거동특성연구)

  • 강형택;김인배;이일근;정진혁
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.257-262
    • /
    • 2003
  • Base isolation bearings are known as an effective system to Protect bridges from the earthquake damage. There are many types of base isolation bearings in the market. Among them, steel hysteretic damper, made of mild steel and one of the oldest ones, has some good features. Since steel hysteretic damper is made of steel and has simple structure, it is cheeper and easier to maintain than other types. Despite the advantages, steel hysteretic damper with pin-type elements has no application in Korea. The steel hysteretic damper with pin-type elements are tested to examin the basic characteristics and to evaluate antiseismic performance. In this paper, the results of the test are presented.

  • PDF

Fundamental Study on Ni-Base Self-Fluxing Alloy Coating by Thermal Spraying(I) - Effect of Splat Behavior of Sprayed Particles on Mechanical Properties of Coating Layer - (Ni-기 자융성합금의 코팅에 관한 기초적 연구(I) - 용사입자의 편평거동이 코팅층의 기계적 특성에 미치는 영향 -)

  • Kim, Y.S.;Kim, H.S.;Nam, K.W.
    • Journal of Power System Engineering
    • /
    • v.1 no.1
    • /
    • pp.70-79
    • /
    • 1997
  • Ni-base self-fluxing alloy powder particles were flame sprayed onto the SS400 mild steel substrate surface. The effects of both substrate temperature and spraying distance on the splat behavior of sprayed particles were examined. The results obtained are summarized as follows: 1) In the splat behavior of Ni-base self-fulxing alloy particles sprayed onto the SS400 mild steel substrate, splashing was observed under the room temperature condition. On the contrary, it showed circular plate pattern in the substrate temperature range over 373K. 2) It was cleared that there was close relationship between mechanical properties of coating layer and splat behavior of sprayed particles. 3) From the experimental results, optimum spraying conditions showed excellent mechanical properties in the case of Ni-base self fluxing alloy sprayed onto the SS400 mild substrate were 473K of substrate temperature and 250mm of spraying distance.

  • PDF

The Study on Microstructures and Mechanical Properties of Mild Steel Joined with Various Spot Welding Conditions (점용접 조건에 의한 연강의 미세조직 및 기계적특성에 관한 연구)

  • 강연철;김대영;김완기;김석원
    • Journal of Welding and Joining
    • /
    • v.18 no.1
    • /
    • pp.52-58
    • /
    • 2000
  • Spot welding, namely a kind of electric resisting welding has been used widely in field of automobile and aircraft industries because of easiness to apply. Specimens used in this study was a mild steel of 1.2mm thickness and the electrode was a Cu-Cr alloy of 6mm diameter. The surface sheared of specimens after testing of tensile shear was observed by SEM(scanning electron microscope) after ultrasonic cleaning for 10min., and microstructures and grain size of all specimens were measured with using of O.M.(Optical microscope). By the means of measurement and observations of tensile shear load, fatigue strength and share surface, the weldability of spot welding was evaluated. When tensile shearing testing, fracture starting point in all specimens was took place at the bond between HAZ(Heat affected zone) and nugget. With increasing in number of layers, fatigue strength was decreased. With increasing in electric current, grain size in the HAZ became more fine.

  • PDF

A Rate-Dependent Elastic Plastic Constitutive Equation in Finite Deformation Based on a Slip Model (슬립모델을 이용한 변형률의존 유한변형 탄소성재료의 구성방정식 개발)

  • 남용윤;김사수;이상갑
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1994.04a
    • /
    • pp.181-188
    • /
    • 1994
  • Generally, the structural material shows rate dependent behaviors, which require to constitute different strain-stress relations according to strain rates. Conventional rate- independent constitutive equations used in general purpose finite analysis programs are inadequate for dynamic finite strain problems. In this paper, a rate dependent constitutive equation for elastic-plastic material was developed. The plastic stretch rate was modeled based on slip model with dislocation velocity and density so that there is no yielding condition, and no loading conditions. Non-linear hardening rule was also introduced for finite strain. Material constants of present constitutive equation were determined by experimental data of mild steel. The constitutive equation was applied to uniaxile tension. It was appeared that the present constitutive equation well simulates rate dependent behaviors of mild steel.

  • PDF

Comparison of Different Techniques for Measurement of Cold Work in Mild Steel

  • Badgujar, B.P.;Jha, S.K.;Goswami, G.L.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.6
    • /
    • pp.616-621
    • /
    • 2003
  • There are various Non-Destructive Evaluation (NDE) techniques used for measurement of residual stresses in material, such as magnetic methods, X-ray diffraction, Ultrasonic velocity measurement etc. The capabilities, applications and limitations of these techniques for evaluation of cold work/plastic deformation were studied and compared. Mild steel plates were subjected to different degree of cold deformation and were analyzed by Magneto-mechanical Acoustic Emission (MAE), Barkhausen Noise (BN) and magnetic properties (hysteresis loop parameters analysis). Further, these specimens were analyzed by X-ray diffraction and ultrasonic velocity measurements. The microhardness measurement and microstructure studies of these cold worked plates were also carried out. The results of all these studies and comparison of different techniques are discussed in this paper.

A Study on the Corrosive Wear Mechanism on Atmospherical Temperature of STS 304 Steel (STS 304강의 분위기온도에 따른 부식마멸기구에 관한 연구)

  • 전태옥;박흥식;주창식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.2
    • /
    • pp.399-406
    • /
    • 1990
  • This paper is studied to know corrosive wear mechanism of STS304 steel on atmospherical temperature against mating material as the same. The corrosive test was carried out by rubbing the annular surface of two test pieces in distilled water and NaCl aqueous solution. The corrosive wear mechanism was investigated by S.E.M. The experimental results show that there is one Lcr transferring from severe wear to mild wear on change of NaCl concentration and atmospherical temperature, and which is the other still remaining in server wear state. It was found that the critical sliding distance Lcr shorten with increasing NaCl concentration but it is longer with ascending atmospherical temperature and the mild wear state still continues under the condition of high generation rate and elimination rate of the corrosive product. Considering upon the result, the model of corrosive wear mechanism is proposed.

Study of Weld Part Status Change by $CO_2$ Welding According to the Variation of Gas Composition and Welding Wire on SS400 Material (가스성분 및 용접와이어의 변화에 따른 SS400소재의 $CO_2$용접에서 용접부의 상태변화 고찰)

  • Kim, Bub-Hun;Kim, Won-Il;Choi, Chang;Park, Yong-Hwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.5
    • /
    • pp.129-136
    • /
    • 2012
  • On this study, $CO_2$ gas, net of Ar gas, and mixed gas in solid wire(AWS ER 70S-6) and flux cored wire(AWS E71T-1) were used to weld on Mild steel(SS400). After the progress, the status changes of the welds in Mild steel(SS400) were investigated with compositional changes. For stable experiments, welding was conducted using the automatic feeder. Radiation testing, hardness testing, chemical composition analysis and penetrated cross-section were measured. Through these experiments, shapes of penetrated cross-section, chemical composition changes, and weld defects according to the variation of welding gas were known. Weld defects and weld cross-sectional shapes by the variation of the welding voltage were also detected.

Evaluation on Casting Material Characteristics of Aluminum Alloy and Mild Steel for Tire Mold Manufacturing by Casting Method

  • Yoon, Hee-Sung;Oh, Yool-Kwon
    • Journal of Korea Foundry Society
    • /
    • v.28 no.5
    • /
    • pp.217-220
    • /
    • 2008
  • 본 연구에서는 유한요소법을 적용한 수치해석을 이용하여 타이어 제조용 금형을 생산하기 위해 사용되는 주조재의 열적 특성에 관하여 조사해 보았다. 고 품질의 정밀도가 좋은 타이어를 제조하기 위해, 일반적으로 타이어 제조용 금형의 주조재로 많이 사용되고 있는 알루미늄 합금과 비교 대상으로 연강을 선정하여 각각의 주조재에 대한 응고과정에서의 온도분포와 응력분포 결과를 수치적으로 계산해 보고 결과를 예측해 보았다. 수치해석을 통한 결과에서, 알루미늄 합금을 사용한 금형의 냉각과정 동안의 온도분포는 연강에 비해 보다 더 안정적으로 나타나는 것을 확인하였으며, 응력분포 결과 또한 알루미늄 합금 금형이 연강에 비해 정밀도를 향상시키고 좋은 품질의 제품을 얻는 데 보다 나은 것으로 나타났다. 그리고 금형의 온도분포와 응력분포는 금형의 냉각과정 동안 주조재의 초기 냉각온도에 의해 크게 영향을 받는 것으로 사료된다. 마지막으로, 이러한 수치해석에 의한 금형의 열적 특성 예측은 향후 고품질, 고정밀도의 금형 생산을 위한 예비성능평가 방법과 경제적 측면에서 매우 유용하게 활용할 수 있을 것으로 보인다.