• 제목/요약/키워드: Midsurface

검색결과 9건 처리시간 0.025초

셀 구조물에서 중립면에 대한 유한요소망의 자동생성 (Automatic Generation of Finite Element Meshes on Midsurfaces in Shell Structures)

  • 손준희;채수원
    • 대한기계학회논문집A
    • /
    • 제28권10호
    • /
    • pp.1517-1525
    • /
    • 2004
  • Shell finite elements are widely used for the analysis of thin section objects such as sheet metal parts, automobile bodies and et al. due to their computational efficiency. Since many of input data for finite element analysis are given as solid models or triangulated surface models, one should extract midsurface information from these input data initially and then construct shell meshes on the extracted midsurfaces. In this paper, a method of generating shell elements on midsurfaces directly from input models has been proposed, in which midsurface generating process can be omitted. In order to construct shell meshes, the input models should be triangulated on surfaces first, and then tetrahedral elements are generated by using an advancing front method, and finally mid shell surfaces are obtained from tetrahedral meshes. Some examples are given to demonstrate the efficiency of the proposed method.

3 차원 구조물에서 Chordal Axis Transform 을 이용한 쉘 요소망의 자동생성 (Automatic Generation of Shell Elements by Using Chordal Axis Transform in 3D Structures)

  • 손준희;채수원
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.700-705
    • /
    • 2004
  • Shell finite elements are widely used for the analysis of thin section objects such as sheet metal parts, automobile bodies and et al. due to their computational efficiency. Since many of input data for finite element analysis are given as solid models or triangulated surface models, one should extract midsurface information from these input data initially and then construct shell meshes on the extracted midsurfaces. In this paper, a method of generating shell elements on midsurfaces directly from input models have been proposed. In order to construct shell meshes, the input models should be triangulated on surfaces first, and then tetrahedral elements are generated by using an advancing front method, and finally mid shell surfaces are obtained from tetrahedral meshes. Some examples are given to demonstrate the efficiency of the proposed method.

  • PDF

3차원 공간 판구조물의 유한요소 해석에 관한 연구 (A Study on the Finite Element Analysis of Three Dimensional Plate Structures)

  • 권오영;남정길
    • 수산해양기술연구
    • /
    • 제35권1호
    • /
    • pp.54-59
    • /
    • 1999
  • High-speed electronic digital computers have enabled engineers to employ various numerical discretization techniques for solutions of complex problems. The Finite Element Method is one of the such technique. The Finite Element Method is one of the numerical analysis based on the concepts of fundamental mathematical approximation. Three dimensional plate structures used often in partition of ship, box girder and frame are analyzed by Finite Element Method. In design of structures, the static deflections, stress concentrations and dynamic deflections must be considered. However, these problem belong to geometrically nonlinear mechanical structure analysis. The analysis of each element is independent, but coupling occurs in assembly process of elements. So, to overcome such a difficulty the shell theory which includes transformation matrix and a fictitious rotational stiffness is taken into account. Also, the Mindlin's theory which is considered the effect of shear deformation is used. The Mindlin's theory is based on assumption that the normal to the midsurface before deformation is "not necessarily normal to the midsurface after deformation", and is more powerful than Kirchoff's theory in thick plate analysis. To ensure that a small number of element can represent a relatively complex form of the type which is liable to occur in real, rather than in academic problem, eight-node quadratic isoparametric elements are used. are used.

  • PDF

미분구적법을 이용 중면신장 및 회전관성의 영향을 고려한 원형아치의 고유진동해석 (Free Vibration Analysis of Circular Arches Considering Effects of Midsurface Extension and Rotatory Inertia Using the Method of Differential Quadrature)

  • 강기준
    • 한국산학기술학회논문지
    • /
    • 제22권1호
    • /
    • pp.9-17
    • /
    • 2021
  • 빌딩, 자동차, 선박, 항공기 등에서 원형 아치의 사용 증가로 인해 이러한 구조물의 동적 거동 해석에 있어 괄목할 만한 성과가 있어 왔다. 탄성 원형 아치의 안정성 거동 해석분야는 많은 연구자들의 관심분야였다. 전통적으로 미분방정식의 해법은 유한차분법 혹은 유한요소법으로 해결해왔다. 복잡한 기하학적 구조 및 하중으로 인한 과도한 컴퓨터 용량의 사용과 복합알고리즘 프로그램의 어려움을 극복하기 위하여 미분구적법(DQM)이 많은 분야에 적용되어왔다. 상미분방정식 혹은 편미분방정식의 해를 구하기 위한 효율적인 방법 중의 하나는 미분구적법이다. 또한 비선형 구조, 하중, 혹은 재료 물성 치로 인한 과도한 컴퓨터 용량의 사용과 복합알고리즘 프로그램의 어려움을 극복하기 위하여 미분구적법(DQM)이 지금도 많이 사용된다. 본 연구에서는, DQM을 이용하여 중면 신장 및 회전 관성의 영향을 고려한 원형 아치의 내 평면 진동을 분석하였다. 다양한 매개변수 비, 경계 조건, 그리고 열림 각에 따른 기본 진동수를 계산하였다. DQM 결과는 활용 가능한 다른 엄밀해 혹은 다른 수치해석과 비교하였다. 해석결과에 따르면 DQM은, 적은 격자점을 사용하고도, 엄밀해 결과와 일치함을 보여주었고, 중면 신장 및 회전 관성이 원형 아치의 기본 진동수에 미치는 영향을 분석할 수 있게 했다.

Timoshenko형 전단변형을 고려한 대칭적층 개단면 복합재 보의 휨해석 (Bending Analysis of Symmetrically Laminated Composite Open Section Beam Using the First-Order Shear Deformation Beam Theory)

  • 권효찬;박영석;신동구
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2000년도 봄 학술발표회논문집
    • /
    • pp.43-50
    • /
    • 2000
  • In the first-order shear deformation laminated beam theory (FSDT), the Kirchhoff hypothesis is relaxed such that the transverse normals do not remain perpendicular to the midsurface after deformation. Bending behavior of laminated composite thin-walled beams with singly- and doubly-symmetric open sections under uniformly distributed and concentrated loads is analyzed by the Timoshenko-type thin-walled beam theory. A closed-form expression for the shear correction factor of I-shaped composite laminated section is obtained. Numerical examples are presented to compare present analytical solutions by FSDT with the finite element solutions obtained by using three dimensional model. The effects of lamination of scheme and length-to-height ratio on the shear deformation of laminated composite beams with various boundary conditions are studied.

  • PDF

Vibration analysis of free-fixed hyperbolic cooling tower shells

  • Kang, Jae-Hoon
    • Structural Engineering and Mechanics
    • /
    • 제55권4호
    • /
    • pp.785-799
    • /
    • 2015
  • A three-dimensional (3-D) method of analysis is presented for determining the free vibration frequencies of hyperboloidal shells free at the top edge and clamped at the bottom edge like a hyperboloidal cooling tower by the Ritz method based upon the circular cylindrical coordinate system instead of related 3-D shell coordinates which are normal and tangent to the shell midsurface. The Legendre polynomials are used as admissible displacements. Convergence to four-digit exactitude is demonstrated. Natural frequencies from the present 3-D analysis are also compared with those of straight beams with circular cross section, complete (not truncated) conical shells, and circular cylindrical shells as special cases of hyperboloidal shells from the classical beam theory, 2-D thin shell theory, and other 3-D methods.

A co-rotational 8-node assumed strain element for large displacement elasto-plastic analysis of plates and shells

  • Kim, K.D.
    • Structural Engineering and Mechanics
    • /
    • 제15권2호
    • /
    • pp.199-223
    • /
    • 2003
  • The formulation of a non-linear shear deformable shell element is presented for the solution of stability problems of stiffened plates and shells. The formulation of the geometrical stiffness presented here is exactly defined on the midsurface and is efficient for analyzing stability problems of thick plates and shells by incorporating bending moment and transverse shear resultant force. As a result of the explicit integration of the tangent stiffness matrix, this formulation is computationally very efficient in incremental nonlinear analysis. The element is free of both membrane and shear locking behaviour by using the assumed strain method such that the element performs very well in the thin shells. By using six degrees of freedom per node, the present element can model stiffened plate and shell structures. The formulation includes large displacement effects and elasto-plastic material behaviour. The material is assumed to be isotropic and elasto-plastic obeying Von Mises's yield condition and its associated flow rules. The results showed good agreement with references and computational efficiency.

Dimension Reduction of Solid Models by Mid-Surface Generation

  • Sheen, Dong-Pyoung;Son, Tae-Geun;Ryu, Cheol-Ho;Lee, Sang-Hun;Lee, Kun-Woo
    • International Journal of CAD/CAM
    • /
    • 제7권1호
    • /
    • pp.71-80
    • /
    • 2007
  • Recently, feature-based solid modeling systems have been widely used in product design. However, for engineering analysis of a product model, an ed CAD model composed of mid-surfaces is desirable for conditions in which the ed model does not affect analysis result seriously. To meet this requirement, a variety of solid ion methods such as MAT (medial axis transformation) have been proposed to provide an ed CAE model from a solid design model. The algorithm of the MAT approach can be applied to any complicated solid model. However, additional work to trim and extend some parts of the result is required to obtain a practically useful CAE model because the inscribed sphere used in the MAT method generates insufficient surfaces with branches. On the other hand, the mid-surface ion approach supports a practical method for generating a two-dimensional ed model, even though it has difficulties in creating a mid-surface from some complicated parts. In this paper, we propose a dimension reduction approach on solid models based on the midsurface abstraction approach. This approach simplifies the solid model by abbreviating or removing trivial features first such as the fillet, mounting, or protrusion. The geometry of each face is replaced with mid-patches from the simplified model, and then unnecessary topological entities are deleted to generate a clean ed model. Also, additional work, such as extending and stitching mid-patches, completes the generation of a mid-surface model from the patches.

Avoidance of Internal Resonances in Hemispherical Resonator Assemblies from Fused Quartz Connected by Indium Solder

  • 세르게이 사라플로프;이희남;박상진
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2013년도 춘계학술대회 논문집
    • /
    • pp.835-841
    • /
    • 2013
  • Modern solid-state gyroscopes (HRG) with hemispherical resonators from high-purity quartz glass and special surface superfinishing and ultrathin gold coating become the best instruments for precise-grade inertial reference units (IRU) targeting long-term space missions. Designing of these sensors could be a notable contribution into development of Korea as a space nation. In participial, 40mm diameter thin-shell resonator from high-purity fused quartz, fabricated as a single-piece with its supporting stem has been designed, machined, etched, tuned, tested, and delivered by STM Co. (ATS of Ukraine) several years ago; an extremely-high Q-factor (upto 10~20 millions) has been shown. Understanding of the best way how to match such a unique sensor with inner glass assembly of the gyro means how to use the high potential in a maximal extent; and this has become the urgent task. Inner quartz glass assembly has a very thin indium (In) layer soldered the resonator and its silica base (case), but effects of internal resonances between operational modal pair of the shell-cup and its side (parasitic) modes can notable degrade the potential of the sensor as a whole, instead of so low level of resonator's intrinsic losses. Unfortunately, there are special combinations of dimensions of the parts (so-called, "resonant sizes"), when intensive losses of energy occurs. The authors proposed to use the length of stem's fixture as an additional design parameter to avoid such cases. So-called, a cyclic scheme of finite element method (FEM) and ANSYS software were employed to estimate different combinations of gyro assembly parameters. This variant has no mismatches of numerical origin due to FEM's discrete mesh. The optimum length and dangerous "resonant lengths" have been found. The special attention has been paid to analyses of 3D effects in a cup-stem transient zone, including determination of a difference between the positions of geometrical Pole of the resonant hemisphere and of its "dynamical Pole", i.e., its real zone of oscillation node. Boundary effects between the shell (cup) and 3D short "beams" (inner and outer stems) have been ranged. The results of the numerical experiments have been compared with the classic model of a quasi-hemispherical shell band with inextensional midsurface, and the solution using Rayleigh's functions of the $1^{st}$ and $2^{nd}$ kinds. To guarantee the truth of the recommended sizes to a designer of the real device, the analytical and FEM results have been compared with experimental data for a party of real resonators. The consistency of the results obtained by different means has been shown with errors less than 5%. The results notably differ from the data published earlier by different researchers.

  • PDF