• 제목/요약/키워드: Microwave filter

Search Result 208, Processing Time 0.031 seconds

Analysis of Electrostatic Field and Potential Distributions in Conductor-Backed Coupled Coplanar Waveguide Using Conformal Mapping Method (등각사상방법을 이용한 도체로 보강된 결합 도파 선로의 정전기장과 전위 분포 해석)

  • Yoo, Tae-Hoon;Han, Ki-Soo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.6
    • /
    • pp.35-42
    • /
    • 2010
  • We use conformal mapping method to derive the analytical expressions for calculating electrostatic fields and electric potentials surrounding the conductor-backed coupled coplanar waveguide(CBCCPW) structure. Using the derived expressions, the electrostatic fields and potentials are computed at various points of the CBCCPW's geometry and the field and potential distributions are analyzed. The proposed method provides a faster and simpler calculation of the field distributions than the full-wave analysis method because no iterations are required. This method can be widely applied to the analysis of microwave integrated circuits using coupled line, such as coupler, filter, and microstrip antenna.

Current Status of the Korean Solar Radio Burst Locator

  • Bong, Su-Chan;HwangBo, Jung-Eun;Lee, Chang-Hoon;Cho, Kyung-Suk;Park, Young-Deuk;Gary, Dale E.;Lee, Dae-Young
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.32.2-32.2
    • /
    • 2010
  • The Korean Solar Radio Burst Locator (KSRBL) is a single dish radio spectrograph, which is designed to record the spectra of microwave (0.5 - 18 GHz) bursts with 1 MHz spectral resolution and 1 s time cadence, and locate their positions on the solar disk within 2 arcmin. It was installed at KASI in 2009 August, and operational thereafter. The antenna pointing coefficients were initially determined during the installation and refined later using a series of antenna pointing calibrations. The filter to prevent the radio frequency interference around 2 GHz was designed and is to be installed. After the installation, the full frequency coverage will be recovered from the temporarily restricted frequency coverage (5 - 14 GHz). Also an effort to solve a couple of minor problems for the full performance of the system is in progress.

  • PDF

New Harmonic Suppressed Microstirp Ring Bandpass Filters

  • Park, Hyun-Joo;Kim, Jae-Hyuk;Park, Ji-Yong;Lee, Jong-Chu;Kim, Jong-Heon;Lee, Byung-Je;Kim, Nam-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.5
    • /
    • pp.697-706
    • /
    • 2000
  • In this paper, new bandpass filters that are composed of microstrip ring resonators with the center frequency of 5.775 GHz and the bandwidth of 100 MHz are presented. For the suppression of the unnecessary harmonics, lowpass filters are inserted into the feedlines and ring resonator itself, respectively These bandpass filters show good microwave characteristics with the harmonic suppression ratio of about 39 dB and 35 dB, respectively. Also, the varactor-tuned microstip ring bandpass filter with harmonic suppression is suggested and the tuning bandwidth of more than 450 MHz is obtained.

  • PDF

A Study on the Fabrication Technologies for the 23 GHz 2-Stage LNA (23 GHz대 2단 저잡음 증폭기의 제작기술에 관한 연구)

  • 안동식;장동필
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.8 no.1
    • /
    • pp.52-60
    • /
    • 1997
  • A 23GHz 2-stage LNA was designed using MPIE numerical analysis and microwave CAD EEsof softwares. The basic circuit was designed by EEsof tools but analyzed more precisely using numerical MPIE tools and modified. The matching sections of the input and output terminals were designed with paralledl coupled filter-type lines, these matching sections perform impedance matching and DC blocking, more over have the advantages of small discontinuities and small errors in the design process. The FET chip is directly attached to the ground metal. The designed LNA gives 15.2dB gain and 2.7dB noise figure. without considering 1.8dB loss of connectors. These results validate our design process and matching schemes and fabrication technologies over the 20GHz frequency range.

  • PDF

An Experimental Study on the Tuning Characteristics of a Re-enterant cavity resonator (Re-enterant 공동 공진기의 주파수 가변 특성에 관한 실험적 고찰)

  • 김진구;홍의석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.12 no.2
    • /
    • pp.133-138
    • /
    • 1987
  • In this paper the tuning characteristics of resonant frequencies are experimentally studied through the variation of the length of the inner conducting rod in a re-enterant eavity resonator. The re-enterant eavity resonator consists of a coaxial cable and a cylindrical wave guide. The length of the inner conducting rod can be varied to the longitudinal direction. The resonant frequencies of TMonq modes are measured according to the arbitrary length. In order to verify the propriety of experimental results, experimental results are compared with other theoretical results. The results in this paper can be applied to wave meter and resonant circuit of amplifier. They will be use to vary resonant frequencies of a dielectric resonator in MIC and filter.

  • PDF

Implementation of Frequency Bandwidth Expander using VCO Drift Canceller and Comb generator (VCO 표류 성분 상쇄기와 빗쌀 하모닉 발생기를 이용한 주파수 대역 확장기의 구현)

  • 강승민
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.9B
    • /
    • pp.1683-1689
    • /
    • 1999
  • We have implemented Frequency bandwidth expander with frequency upconverting by VCO drift canceller and comb generator. Te output of the low frequency synthesizer which the output frequency is 220~280MHz(Resolution : 5MHz) is expanded to 1660~2140MHz by this system. The phase noise of this system only depends on the phase noise of comb generator and low frequency synthesizer. The phase noise of VCO don’t influence at the frequency expander because the drift of VCO cancel out. When we control the output of VCO, the output frequency of this system is varied by 60MHz x N as filter banker. The switching time and the spurious of the frequency expander is below 3usec, -55dBc respectively. This system easily expands bandwidth additively by expanding the output bandwidth of the VCO. We can apply the frequency expander to very wide band microwave synthesizer which has fast switching time.

  • PDF

Dual-Band Six-Port Direct Conversion Receiver with I/Q Mismatch Calibration Scheme for Software Defined Radio (Software Defined Radio를 위한 I/Q 부정합 보정 기능을 갖는 이중 대역 Six-Port 직접변환 수신기)

  • Moon, Seong-Mo;Park, Dong-Hoon;Yu, Jong-Won;Lee, Moon-Que
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.6
    • /
    • pp.651-659
    • /
    • 2010
  • In this paper, a new six-port direct conversion receiver for high-speed multi-band multi-mode wireless communication system such as software defined radio(SDR) is proposed. The designed receiver is composed of two CMOS four-port BPSK receivers and a dual-band one-stage polyphase filter for quadrature LO signal generation. The four-port BPSK receiver, implemented in 0.18 ${\mu}m$ CMOS technology for the first time in microwave-band, is composed of two active combiners, an active balun, two power detector, and an analog decoder. The proposed polyphase filter adopt type-I architecture, one-stage for reduction of the local oscillator power loss, and LC resonance structure instead of using capacitor for dual-band operation. In order to extent the operation RF bandwidth of the proposed six-port receiver, we include I/Q phase and amplitude calibration scheme in the six-port junction and the power detector. The calibration range of the phase and amplitude mismatch in the proposed calibration scheme is 8 degree and 14 dB, respectively. The validity of the designed six-port receiver is successfully demonstrated by modulating M-QAM, and M-PSK signal with 40 Msps in the two-band of 900 MHz and 2.4 GHz.

Design of a Fully Integrated Low Power CMOS RF Tuner Chip for Band-III T-DMB/DAB Mobile TV Applications (Band-III T-DMB/DAB 모바일 TV용 저전력 CMOS RF 튜너 칩 설계)

  • Kim, Seong-Do;Oh, Seung-Hyeub
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.4
    • /
    • pp.443-451
    • /
    • 2010
  • This paper describes a fully integrated CMOS low-IF mobile-TV RF tuner for Band-III T-DMB/DAB applications. All functional blocks such as low noise amplifier, mixers, variable gain amplifiers, channel filter, phase locked loop, voltage controlled oscillator and PLL loop filter are integrated. The gain of LNA can be controlled from -10 dB to +15 dB with 4-step resolutions. This provides a high signal-to-noise ratio and high linearity performance at a certain power level of RF input because LNA has a small gain variance. For further improving the linearity and noise performance we have proposed the RF VGA exploiting Schmoock's technique and the mixer with current bleeding, which injects directly the charges to the transconductance stage. The chip is fabricated in a 0.18 um mixed signal CMOS process. The measured gain range of the receiver is -25~+88 dB, the overall noise figure(NF) is 4.02~5.13 dB over the whole T-DMB band of 174~240 MHz, and the measured IIP3 is +2.3 dBm at low gain mode. The tuner rejects the image signal over maximum 63.4 dB. The power consumption is 54 mW at 1.8 V supply voltage. The chip area is $3.0{\times}2.5mm^2$.

Radome Slope Estimation using Mode Parameter Renewal Method of IMM Algorithm (IMM 알고리듬의 모드 계수 갱신 방법을 통한 레이돔 굴절률 추정)

  • Kim, Young-Mo;Back, Ju-Hoon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.5
    • /
    • pp.763-770
    • /
    • 2017
  • A radome mounted on the front of an aircraft can cause refraction errors for various reasons that occur during maneuver in seeking and tracking a target. This refraction error means that the microwave seeker is detecting apparent target. An Interactive Multiple Model (IMM) algorithm is applied to estimate radome slope mounted on an aircraft in 3D space. However, even though the parameter of uncertain system model such as radome slope can be estimated, the estimated performance can not be guaranteed when it exceeds the range of the predicted value. In this paper, we propose a method to update the predicted value by using the radome slope as the mode parameter of the IMM algorithm, and confirm the radome slope estimation performance of the proposed method.

Monolithic Integrated Amplifier for Millimeter Wave Band (밀리미터파 대역 단일 집적 증폭기)

  • Ji, Hong-Gu;Oh, Seung-Hyeub
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.10
    • /
    • pp.3917-3922
    • /
    • 2010
  • In this paper, 3 stage amplifier MMIC was designed and fabricated with U-band optimized epitaxal pHEMT that produced by large signal characterization and modeling for 60 GHz band. The pHEMT used in this paper, the gate $0.12\;{\mu}m$ length and total gate width of $100\;{\mu}m$, $200\;{\mu}m$ has been modeled using the large signal designed with negative feedback and MCLF instead of MIM capacitor for improving stability. Fabricated MMIC $2.5{\times}1.5mm^2$ size, current about 40 mA, operating frequency 59.5~60.5 GHz, gain 19.9~18.6 dB, input matching characteristics -14.6~-14.7 dB, output matching characteristics -11.9~-16.3 dB and output -5 dBm characteristics were obtained.