• Title/Summary/Keyword: Microstrip line

Search Result 710, Processing Time 0.026 seconds

Dual-band Predistortion Linear Power Amplifier for Base-station Application (기지국용 이중 대역 전치 왜곡 선형 전력 증폭기)

  • Choi, Heung-Jae;Jeong, Yong-Chae;Kim, Chul-Dong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.10 s.113
    • /
    • pp.959-966
    • /
    • 2006
  • This paper proposes a new concept about dual band predistortion linear power amplifier(PD LPA) using diplexer for digital cellular ($f_o$=880 MHz) and IMT-2000($f_o$=2,140 MHz) base stations. The diplexer is composed of low pass filter having defected ground structure(BGS) microstrip line and high pass filter having high-Q lumped capacitors and distributed elements. The proposed predistorter adopts a reflection type intermodulation signal generator with 3 dB hybrid coupler for good reflection characteristic. for a forward link one carrier CDMA IS-95A 1FA and WCDMA 1FA signal, the proposed dual band PD LPA shows the adjacent channel leakage ratio(ACLR) improvement about 10 dB and 9.36 dB for digital cellular and IMT-2000 band, respectively.

Development of an SIS(Superconductor-Insulator-Superconductor) Junction Mixer over 120∼180 GHz Band (120∼180 GHz 대역 SIS (Superconductor-Insulator-Superconductor) 접합 믹서의 개발)

  • Chung, Moon-Hee;Lee, Changhoon;Kim, Kwang-Dong;Kim, Hyo-Ryoung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.8
    • /
    • pp.737-743
    • /
    • 2004
  • A fixed-tuned SIS(Superconductor-Insulator-Superconductor) mixer across 120∼180 GHz band has been developed. This mixer employs an SIS chip fabricated by Nobeyama radio observatory which consists of a series array of 6 Nb/Al-Al$_2$O$_3$/Nb junctions in a microstrip line on a fused quartz substrate. The SIS chip is placed at the center of the half-height waveguide mixer mount to have a good incoming signal coupling over the whole frequency band. No mechanical tuner was used in the SIS mixer and the RF signal and local oscillator power are injected to the mixer via a cooled cross-guide coupler. In order to prevent the IF signal loss, the If output impedance of the SIS mixer was matched to the 50 $\Omega$ input impedance of the IF chain. Measured double sideband noise temperatures of a receiver using the SIS mixer are 32∼131 K over 120∼180 GHz band. The developed SIS mixer is now in use for radio astronomical observations on the TRAO 14 m radio telescope.

High-Frequency Modeling of Printed Spiral Coil Probes for Radio-Frequency Interference Measurement (무선주파수 간섭 측정을 위한 Printed Spiral Coil (PSC) 프로브의 고주파 모델링)

  • Kim, yungmin;Song, Eakhwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.1
    • /
    • pp.10-19
    • /
    • 2018
  • In this paper, a new high-frequency equivalent circuit model of printed spiral coils (PSCs) for radio-frequency interference (RFI) measurement has been proposed. To achieve high-frequency modeling, the proposed model consists of distributed components designed based on the design parameters of the PSCs. In addition, an analytic model for PSCs based on T-pi conversion has been proposed. To investigate the feasibility of the proposed model for RFI measurement, the transfer function between a microstrip line and a PSC has been extracted by combining the proposed model and mutual inductance. The self-impedances of the proposed model and the transfer function have been successfully validated using three-dimensional field simulation and measurements, revealing noticeable correlations up to a frequency of 6 GHz. The proposed model can be employed for high-frequency probe design and RFI noise estimation in the gigahertz range wireless communication bands.

Design and Implementation of VCO for X-band with Shorted Coupled C type Resonator (접지된 결합 C형 공진기를 이용한 X대역 전압제어 발진기 설계 및 구현)

  • Kim, Jong-hwa;Kim, Gi-rae
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.6
    • /
    • pp.539-545
    • /
    • 2016
  • In this paper, a novel coupled C type resonator is proposed for improvement of phase noise characteristics that is weak point of oscillator using planar type microstrip line resonator. Oscillator using proposed shorted coupled C type resonator is designed, it has improved phase noise characteristics. At the fundamental frequency of 9.8GHz, 4.87dBm output power and -84.7 dBc@100kHz phase noise have been measured for oscillator with shorted coupled C type resonator. Next, we designed voltage controlled oscillator using proposed shorted coupled C type resonator with varactor diode. The VCO has 33.8MHz tuning range from 9.7807GHz to 9.8145GHz, and phase noise characteristic is -115~-112.5dBc/Hz@100KHz. Due to its simple fabrication process and planar type, it is expected that the technique in this paper can be widely used for low phase noise oscillators for both MIC and MMIC applications.

Triple-band Multiplexer for a Low Power Portable Base Station (이동통신 기지국용 삼중대역 멀티플렉서)

  • Seo, Soo-Duk;Cho, Hak-Rea;Yang, Doo-Yeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.12
    • /
    • pp.7309-7316
    • /
    • 2014
  • In this paper, a triple-band multiplexer using a microstrip transmission line was designed and fabricated to make use of a low power portable base station. This multiplexer was used in the triple-band including the cellular, WCDMA and LTE mobile frequency band, and designed to have an insertion loss of 0.8 dB, low SWR of 1.5 in the passband and a band rejection of 15 dB in the stopband. From the measured results obtained by a confidence test for the fabricated multiplexer samples, the maximum insertion loss and SWR of the fabricated multiplexer samples in all passbands of 824-894MHz, 1920-2170 MHz and 2500-2600 MHz were below 0.71 dB and 1.38, and the attenuations in the stopbands were better than 15 dB. Therefore, the triple-band multiplexer has good performance and satisfies the design specifications.

A Study on the Design of Elliptic-Function Narrow-Band Bandpass Filters for Tx RF of the IMT-2000 Mobile Equipment (IMT-2000 단말기의 Tx RF용 타원행 협대역 대역통과 필터의 설계에 관한 연구)

  • Lee, Sang Won;Chung, Myung-Rae;Kim, Hak-Sun;Hong, Shin-Nam
    • Journal of Advanced Navigation Technology
    • /
    • v.5 no.2
    • /
    • pp.141-148
    • /
    • 2001
  • This paper describe the development of narrow-band passband filter with small package and low loss, high selectivity performance. This filter is placed between power amplifier and frequency mixer of IMT-2000 mobile equipment. The elliptic-function narrow-band passband filter is designed with new architecture using the microstrip line. This package is very small by $3.2cm{\times}1.25cm$ and have the 3 % 3 dB bandwidth. Also in the passband the insertion loss is about 2.5 dB and is better than older RF SAW filter(insertion loss: 3.2 dB). In the stop-band it has the two deep notch under the -56 dB.

  • PDF

High Power Amplifier using Radial Power Combiner (레디알 전력 결합기를 이용한 고출력 증폭기)

  • Choi, Jong-Un;Yoon, Young-Chul;Kim, Young
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.6
    • /
    • pp.626-632
    • /
    • 2017
  • This paper describes a high power amplifier combining eight low power amplifiers using a radial power combiner with low insertion loss. The radial power combiner is a non-resonant type combiner with 8 input ports and is implemented by microstrip transmission line. The combiner characteristics designed at operating frequency of 1.045 GHz have an insertion loss of 0.7 dB and a return loss of more than 12 dB. Also, the low power amplifier used was designed with AFT27S010NT1 transistor and designed to satisfy the same gain, phase and constant output characteristic at operating frequency. The high power amplifier, which combiners the radial power combiner and the drive amplifier of 8 W output by driving low power amplifiers obtained the output characteristic of 33 W at operating frequency of 1.045 GHz. Also, the change of the output characteristic of the amplifier using the radial combiner was graceful degradation when the low power amplifier failed one by one.

Design of a Wideband Double-sided Dipole Array Antenna for a 3.5 GHz band (3.5 GHz대역용 광대역 양면 다이폴 배열 안테나 설계)

  • Kim, GunKyun;Kang, Nyoung-Hak;Rhee, Seung-Yeop;Lee, Jong-Ig;Yeo, Junho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.61-62
    • /
    • 2018
  • In this paper, we studied a wideband double-sided dipole antenna operating at 3.5 GHz (WiMAX) band. The each printed dipoles are placed on the both sides of the substrate. It can be easily implemented and is suitable for connection with an active circuit. In order to obtain wideband printed dipole characteristics, thick rectangular shaped dipole is adopted. Feeding Circuit for dipole array and balun were designed for impedance matching with a $50{\Omega}$ microstrip feed line. The antenna is designed by simulation for an operation in the frequency range of 3.4~3.7 GHz Simulation results show that the maximum gain in the 3.5 GHz band is 5.5 dBi and the bandwidth with VSWR less than 2 is about 1 GHz.

  • PDF

Design of Dual-Band Power Amplifier for the RFID Frequency-Band (RFID 대역에서 동작하는 이중 대역 전력증폭기 설계)

  • Kim, Jae-Hyun;Hwang, Sun-Gook;Park, Hyo-Dal
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.3
    • /
    • pp.376-379
    • /
    • 2014
  • In this paper, we designed more improving a dual-band power amplifier than the transceiver of RFID reader that operates at 910 MHz and 2.45 GHz. A dual-band power amplifier has two circuits. One matching circuit is composed lumped element in the band of 910 MHz. The other matching circuit using distributed element in the high band of 2.45 GHz. So, this dual-band power amplifier works as Band Rejection Filter in the band of 910 MHz but in the high band of 2.45 GHz works as Band Pass Filter. Therefore, this is composed a microstrip transmission line. A power amplifier is showed gains of 8 dB output power at 910 MHz and 1.5 dB output power at 2.45 GHz. If input power is 10 dBm, both of bands output 20 dBm.

Design of a High Efficiency Class E Amplifier for Wireless LAN (무선 LAN용 고효율 E급 증폭기 설계)

  • Park Chan-Hyuck;Koo Kyung-Heon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.8 s.350
    • /
    • pp.91-96
    • /
    • 2006
  • High efficiency switching mode circuits such as class I amplifiers have been well known in the MHz frequency range. The class E amplifier is a type of switching mode amplifier offering very high efficiency approaching 100%. In this paper, the class E amplifier has been designed by using the harmonic balance method of circuit simulator. The designed amplifier is realized by using pHEMT and microstrip line, shows 66% power added efficiency (PAE) at 2.4GHz with 17.6dBm output power. With -3dBm input power of wireless LAN, measured output spec01m can meet the required IEEE 802.11g standard spectrum mask. That means the required amplifier back off of 9dB from $P_{ldB}$ to satisfy the required wireless LAN spectrum mask.