DOI QR코드

DOI QR Code

High-Frequency Modeling of Printed Spiral Coil Probes for Radio-Frequency Interference Measurement

무선주파수 간섭 측정을 위한 Printed Spiral Coil (PSC) 프로브의 고주파 모델링

  • Kim, yungmin (Department of Electronics and Communications Engineering, Kwangwoon University) ;
  • Song, Eakhwan (Department of Electronics and Communications Engineering, Kwangwoon University)
  • 김경민 (광운대학교 전자통신공학과) ;
  • 송익환 (광운대학교 전자통신공학과)
  • Received : 2017.12.01
  • Accepted : 2018.01.09
  • Published : 2018.01.31

Abstract

In this paper, a new high-frequency equivalent circuit model of printed spiral coils (PSCs) for radio-frequency interference (RFI) measurement has been proposed. To achieve high-frequency modeling, the proposed model consists of distributed components designed based on the design parameters of the PSCs. In addition, an analytic model for PSCs based on T-pi conversion has been proposed. To investigate the feasibility of the proposed model for RFI measurement, the transfer function between a microstrip line and a PSC has been extracted by combining the proposed model and mutual inductance. The self-impedances of the proposed model and the transfer function have been successfully validated using three-dimensional field simulation and measurements, revealing noticeable correlations up to a frequency of 6 GHz. The proposed model can be employed for high-frequency probe design and RFI noise estimation in the gigahertz range wireless communication bands.

본 논문에서는 고주파 Radio-Frequency Interference (RFI) 측정용 프로브로 널리 쓰이는 Printed Spiral Coil(PSC)의 고주파 등가회로 모델이 제안되었다. 제안된 모델은 고주파 정합성을 확보하기 위하여 PSC의 설계변수에 기반한 분포 모델로 설계되었으며, 제안된 분포 등가회로 모델을 바탕으로 T-Pi 등가변환을 이용한 PSC의 고주파 해석적 모델 역시 새로이 제안되었다. 제안된 모델의 실제 고주파 RFI 측정 시 효용성을 확인하기 위하여, 임의의 RFI 노이즈 원으로 설계된 마이크로스트립 라인과 PSC 사이의 전달함수를 제안된 모델과 상호 인덕턴스를 결합하여 추출하였다. 제안된 PSC 모델의 자기 임피던스(self-impedance)와 전달함수는 3-dimensional field solver를 이용한 시뮬레이션 및 실 측정으로 검증되었으며, 6 GHz까지 높은 정합성을 보이는 것이 확인되었다. 제안된 PSC의 자기 임피던스 및 전달함수 모델은 GHz 영역의 고주파 통신대역에서의 RFI 측정용 프로브 설계 및 노이즈 간섭 예측에 활용될 수 있다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. S. Grivet-Talocia, M. Bandinu, F. Canavero, I. Kelander, and P. Kotiranta, "Fast assessment of antenna-PCB coupling in mobile devices: A macromodeling approach," in 2009 20th International Zurich Symposium on Electromagnetic Compatibility, Zurich, 2009, pp. 193-196.
  2. H. H. Chuang, G. H. Li, E. Song, H. H. Park, H. T. Jang, and H. B. Park, et al., "A magnetic-field resonant probe with enhanced sensitivity for RF interference applications," IEEE Transactions on Electromagnetic Compatibility, vol. 55, no. 6, pp. 991-998, Dec. 2013. https://doi.org/10.1109/TEMC.2013.2248011
  3. E. Song, J. Choi, and Y. J. Lee, "Near-field noise-emission modeling for monitoring multimedia operations in mobile devices," IEEE Transactions on Smart Processing & Computing, vol. 5, no. 6, pp. 440-444, Dec. 2016. https://doi.org/10.5573/IEIESPC.2016.5.6.440
  4. S. S. Mohan, M. del Mar Hershenson, S. P. Boyd, and T. H. Lee, "Simple accurate expressions for planar spiral inductances," IEEE Journal of Solid-State Circuits, vol. 34, no. 10, pp. 1419-1424, Oct 1999. https://doi.org/10.1109/4.792620
  5. Y. Cheng, Y. Shu, "A new analytical calculation of the mutual inductance of the coaxial spiral rectangular coils," IEEE Transactions on Magnetics, vol. 50, no. 4, pp. 1-6, Apr. 2014.
  6. K. Kim, H. Oh, and E. Song, "Modeling of printed spiral coils based on conformal mapping method with fringing capacitance effects," in 2017 Asia-Pacific International Symposium on Electromagnetic Compatibility(APEMC), Jun. 2017, pp. 362.
  7. M. E. Davis, E. W. Williams, and A. C. Celestini, "Finite-boundary corrections to the coplanar waveguide analysis(short papers)," IEEE Transactions on Microwave Theory and Techniques, vol. 21, no. 9, pp. 594-596, Sep. 1973. https://doi.org/10.1109/TMTT.1973.1128081
  8. M. Spang, M. Albach, and G. Schubert, "Response of a magnetic loop probe to the current and voltage on a microstrip line," in 2008 IEEE International Symposium on Electromagnetic Compatibility, Detroit, 2008, pp. 1-5.
  9. D. M. Pozar, Microwave Engineering, Wiley, 2012, pp. 191-194.