• 제목/요약/키워드: Microshaft

검색결과 8건 처리시간 0.023초

전해 가공을 이용한 텅스텐 카바이드 미세축 제작 (Fabrication of Tungsten Carbide Microshaft Using Electrochemical Machining)

  • 강명주;오영탁;주종남
    • 한국정밀공학회지
    • /
    • 제19권3호
    • /
    • pp.80-87
    • /
    • 2002
  • Tungsten carbide microshaft is used as micro-punch, electrode of MEDM (micro-electro-discharge machining), and micro-tool because it has high hardness and high rigidity. In this study, the tungsten carbide microshaft was fabricated using electrochemical machining. Concentration of material removal at the sharp edge and metal corrosion layer affect the shape of the microshaft. Control of microshaft shape was possib1e through conditioning the machining voltage and electrolyte concentration. By applying periodic voltage, material removal rate increased and surface roughness improved. The fabricated microshaft in $H_2 SO_4$ electrolyte maintained sharper end edge and better surface finish than those fabricated by other electrolytes.

텅스텐카바이드 미세축의 전해가공 시 최적가공조건 선정 (Optimal Machining Condition of WC-Microshaft Using Electrochemical Machining)

  • 최세환;류시형;최덕기;주종남
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.245-249
    • /
    • 2002
  • Tungsten carbide microshaft is used as various micro-tools in MEMS because it has high hardness and good rigidity. In this study, experiments were performed to produce tungsten carbide microshaft using electrochemical machining. $H_2SO_4$solution was used as electrolyte because it can dissolve tungsten and cobalt simultaneously. Optimal electrolyte concentration and machining voltage satisfying uniform shape and large MRR of workpiece were found. For one-step machining, the immersion depth over 1 mm was selected for avoidance of concentration of electric charge at the tip of the microshaft. The limit diameter with good straightness was shown and an empirical formula for WC-microshaft machining was suggested. By controlling the various machining parameters, a straight microshaft with 30 $\mu\textrm{m}$ diameter, over 1 mm length and under 0.5$^{\circ}$ taper angle was obtained.

  • PDF

텅스텐 카바이드 미세축의 전해가공 (Electrochemical Machining of Tungsten Carbide Microshaft)

  • 이강희
    • 한국생산제조학회지
    • /
    • 제19권3호
    • /
    • pp.370-375
    • /
    • 2010
  • 본 연구에서는 전해가공을 이용해서 직경이 균일한 텅스텐 카바이드 미세축을 제작하는 실험을 수행하였다. 전해가공을 통해 미세축으로 사용 가능한 형상을 얻기 위한 최적의 가공 조건에 대해 고찰하였다 이 과정에서 미세축의 형상에 영향을 주는 여러 인자들을 적절하게 조절하여 최적의 형상을 얻을 수 있었다. 그리고 가공된 미세축을 이용하여 적절한 조건으로 2차, 3차 가공을 수행하여 초미세축을 가공할 수 있음을 보였다. 그리하여 실험 결과 직경 $30{\mu}m$, 길이 $500{\mu}m$의 텅스텐 카바이드 미세축을 제작하였다.

미소 축.구멍 가공용 미세 방전 가공기의 개발 (Development of Micro-EDM Machine for Microshaft and Microhole Machining)

  • 김규만;김보현;주종남
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.1075-1079
    • /
    • 1995
  • It is difficult to machine microparts, such as microshaft and microholes, by conventional machining. Such micropart can be easily machined by EDM because it's machining force is very low. In micro-EDM, the precise electrode movement and discharge energy control are important. Therefore, high precision motion stage and EDM device with high performance is necessary. In this research, a new EDM machine was developed and microshaft and microhole, with various shape and size, was machined.

  • PDF

미세 축ㆍ구멍 가공을 위한 미세방전가공기의 개발 (Development of Micro-EDM Machine for Microshaft and Microhole Machining)

  • 김규만;최덕기;주종남
    • 한국정밀공학회지
    • /
    • 제15권12호
    • /
    • pp.55-61
    • /
    • 1998
  • Recently, the needs of machining technologies of very small parts have been increasing with advent of micro-revolution. These technologies have mostly used the method applied to semi-conductor production process such as LIGA, etc. But they have serious difficulties to settle down in terms of workpiece materials, machining thickness, 3-dimensional structure. Therefore. mciro-machining technology using EDM(Electrical Discharge Machining) was proposed. It is very difficult to machine the micro-parts (microshaft, microhole) using conventional machining. Micro-machining using BDM can machine the micro-parts easily because it requires little machining force. This MEDM(Micro-EDM) need the capabilities to move a electrode and control a discharge energy precisely, and the gap control strategy to maintain the optimal discharge condition is necessary. Therefore, in this study, the new EDM machine with high precision motion stage and high-performance EDM device was developed. Using this MEDM machine, we have machined microshaft and microhole with various shapes and sizes.

  • PDF

전해 프로세스를 이용한 미세축 제작 (Fabrication of Microshafts using Electrochemical Process)

  • 임영모;임형준;김수현
    • 한국정밀공학회지
    • /
    • 제18권3호
    • /
    • pp.169-174
    • /
    • 2001
  • We proposed a new fabrication method using electrochemical process for microshafts. This method is a kind of atomic removal process by chemical reaction. Therefore, it is possible to make thin and long shafts regardless of the stiffness of materials. Because shaping process is simply switched to polishing process by varying process conditions, we can precisely fabricate microshafts with very smooth surface. We also fabricated a very thin shaft with the diameter as small as 10$\mu$m and a microshaft with high aspect ratio.

  • PDF

전해 프로세스에 의한 미세축 가공시 형상 및 직경 제어 (Shape and Diameter Control of Microshafts in Electrochemical Process)

  • 임영모;임형준;김수현
    • 한국정밀공학회지
    • /
    • 제18권5호
    • /
    • pp.50-56
    • /
    • 2001
  • Fabrication methods are shown to produce slender and cylindrical tungsten shafts by electrochemical etching. The shape of microshatf formed by electrochemical etching is determined by the combination of two conflicting factors, i.e., initial shape and diffusion layer. We can obtain a desirable shaft profile by adjusting the thickness gradient of diffusion layer. The diameter of microshaft is controlled by mathematical model based on relation between process parameters and diameter.

  • PDF

전해 가공을 이용한 WC 미세축 제작 (WC Micro-shaft Fabrication Using Electrochemical Etching)

  • 최세환;류시형;최덕기;주종남
    • 한국정밀공학회지
    • /
    • 제21권6호
    • /
    • pp.172-178
    • /
    • 2004
  • Tungsten carbide microshaft can be used as various micro-tools for MEMS because it has high hardness and high rigidity. In this study, experiments are performed to produce tungsten carbide micro-shaft using electrochemical etching. H$_2$SO$_4$ solution is used as electrolyte because it can dissolve tungsten and cobalt simultaneously. Optimal electrolyte concentration and machining voltage satisfying uniform shape, good surface quality, and high MRR of workpiece are experimentally found. By controlling the various machining parameters, a straight micro-shaft with 5 ${\mu}{\textrm}{m}$ diameter, 3 mm length, and 0.2$^{\circ}$taper angle was obtained.