• Title/Summary/Keyword: Microscopic simulation model

Search Result 112, Processing Time 0.023 seconds

NANOCAD Framework for Simulation of Quantum Effects in Nanoscale MOSFET Devices

  • Jin, Seong-Hoon;Park, Chan-Hyeong;Chung, In-Young;Park, Young-June;Min, Hong-Shick
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.6 no.1
    • /
    • pp.1-9
    • /
    • 2006
  • We introduce our in-house program, NANOCAD, for the modeling and simulation of carrier transport in nanoscale MOSFET devices including quantum-mechanical effects, which implements two kinds of modeling approaches: the top-down approach based on the macroscopic quantum correction model and the bottom-up approach based on the microscopic non-equilibrium Green’s function formalism. We briefly review these two approaches and show their applications to the nanoscale bulk MOSFET device and silicon nanowire transistor, respectively.

Development of Multiscale Simulation Technique for Multiphase Fluid System (다상 유체 시스템의 다중 스케일 시뮬레이션 기법에 관한 연구)

  • Han, Min-Sub
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.6
    • /
    • pp.569-577
    • /
    • 2010
  • A multiscale particle simulation technique that can be applied to a multiphase fluid system has been developed. In the boundary region where the macroscopic- and microscopic-scale models overlap each other, three distinctive features are introduced in the simulation. First, a wall is set up between the gas and liquid phases to separate them and match the phases respectively to the macroscopic conditions stably. Secondly, the interfacial profile is obtained near the matching region and the wall translates and rotates to accommodate the change in the liquid-vapor interfacial position in the molecular model. The contact angle thus obtained can be sent to the macroscopic model. Finally, a state of mass and temperature in the region is maintained by inserting and deleting the particles. Good matching results are observed in the cases of the complete and partial wetting fluid systems.

Experimental and numerical study on pre-peak cyclic shear mechanism of artificial rock joints

  • Liu, Xinrong;Liu, Yongquan;Lu, Yuming;Kou, Miaomiao
    • Structural Engineering and Mechanics
    • /
    • v.74 no.3
    • /
    • pp.407-423
    • /
    • 2020
  • The pre-peak cyclic shear mechanism of two-order asperity degradation of rock joints in the direct shear tests with static constant normal loads (CNL) are investigated using experimental and numerical methods. The laboratory testing rock specimens contains the idealized and regular two-order triangular-shaped asperities, which represent the specific geometrical conditions of natural and irregular waviness and unevenness of rock joint surfaces, in the pre-peak cyclic shear tests. Three different shear failure patterns of two-order triangular-shaped rock joints can be found in the experiments at constant horizontal shear velocity and various static constant normal loads in the direct and pre-peak cyclic shear tests. The discrete element method is adopted to simulate the pre-peak shear failure behaviors of rock joints with two-order triangular-shaped asperities. The rock joint interfaces are simulated using a modified smooth joint model, where microscopic scale slip surfaces are applied at contacts between discrete particles in the upper and lower rock blocks. Comparing the discrete numerical results with the experimental results, the microscopic bond particle model parameters are calibrated. Effects of cyclic shear loading amplitude, static constant normal loads and initial waviness asperity angles on the pre-peak cyclic shear failure behaviors of triangular-shaped rock joints are also numerically investigated.

Microscopic damping mechanism of micro-porous metal films

  • Du, Guangyu;Tan, Zhen;Li, Zhuolong;Liu, Kun;Lin, Zeng;Ba, Yaoshuai;Ba, Dechun
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1388-1392
    • /
    • 2018
  • Metal thin films are used widely to solve the vibration problem. However, damping mechanism is still not clear, which limits the further improvement of the damping properties for film and the development of multi-functional damping coating. In this paper, Damping microscopic mechanism of porous metal films was investigated at both macroscopically and microscopically mixed levels. Molecular dynamics simulation method was used to model and simulate the loading-unloading numerical experiment on the micro-pore and vacancy model to get the stress-strain curve and the microstructure diagram of different defects. And damping factor was calculated by the stress-strain curve. The results show that dislocations and new vacancies appear in the micro-pores when metal film is stretched. The energetic consumption from the motion of dislocation is the main reason for the damping properties of materials. Micro-mechanism of damping properties is discussed with the results of in-situ experiment.

Effects of normal stress, shearing rate, PSD and sample size on behavior of ballast in direct shear tests using DEM simulation

  • Md Hussain;Syed Khaja Karimullah Hussaini
    • Geomechanics and Engineering
    • /
    • v.35 no.5
    • /
    • pp.475-486
    • /
    • 2023
  • Ballast particles have an irregular shape and are discrete in nature. Due to the discrete nature of ballast, it exhibits complex mechanical behaviour under loading conditions. The discrete element method (DEM) can model the behaviour of discrete particles under a multitude of loading conditions. DEM is used in this paper to simulate a series of three-dimensional direct shear tests in order to investigate the shear behaviour of railway ballast and its interaction at the microscopic level. Particle flow code in three dimension (PFC3D) models the irregular shape of ballast particles as clump particles. To investigate the influence of particle size distribution (PSD), real PSD of Indian railway ballast specification IRS:GE:1:2004, China high-speed rail (HSR) and French rail specifications are generated. PFC3D built-in linear contact model is used to simulate the interaction of ballast particles under various normal stresses, shearing rate and shear box sizes. The results indicate how shear resistance and volumetric changes in ballast assembly are affected by normal stress, shearing rate, PSD and shear box size. In addition to macroscopic behaviour, DEM represents the microscopic behaviour of ballast particles in the form of particle displacement at different stages of the shearing process.

Estimation of Incheon International Airport Capacity by using Aircraft Delay Simulation Model (시뮬레이션 모델을 활용한 인천국제공항 수용량 산정에 관한 연구)

  • Bang, Jun;Kim, DoHyun
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.27 no.1
    • /
    • pp.20-25
    • /
    • 2019
  • To prepare for the ever-increasing demand for air transport, airport operators should be well aware of the timing of the saturation of the facility and increase the capacity of the airport through extension or extension. The capacity of an airport is determined by the smallest value of the facilities that make up the airport, but it is generally customary to determine the capacity of the costly and time-consuming runway as a whole for the airport. For analyzing the capacity of the runway capacity, the study used the most accurate microscopic air traffic simulation, Simmod-PRO, to analyze the saturation time of three runways currently in Incheon International Airport's operation, and calculate the appropriate time for operation of the 4th runway. The study also calculate the relocation of Airport's high-speed exit taxiway for analyzing the increasing of capacity.

Estimation of Annual Runway Capacity for Jeju International Airport Considering Aircraft Delays (항공기 지연시간을 고려한 제주국제공항 활주로 연간용량 산정)

  • Park, Jisuk;Yun, Seokjae;Lee, Youngjong;Baik, Hojong
    • Journal of Korean Society of Transportation
    • /
    • v.33 no.2
    • /
    • pp.214-222
    • /
    • 2015
  • Jeju International Airport has become the most delayed airport in Korea, due to increased demand in air passengers and unexpected local weather condition. Observing the demands continuously grow for a decade, the airport is expected to be saturated in the near future. As a part of effort to prepare effective and timely measure for this expected situation, airport planners seeks the annual runway capacity, i.e., the appropriate number of flight operations in a given year with tolerable delay. In practice, the FAA formula is frequently adopted for the capacity estimation. The method, however, has intrinsic issues: 1) the hourly capacity imbedded in the formula is not clearly defined and thus the estimated value is vulnerable to be subjective judgement, and 2) the formula doesn't consider aircraft delay resulted from runway congestion. In this paper, we explain a novel method for estimating the daily runway capacity and then converting to the annual capacity taking into account the aircraft delay. In this paper, average delay of aircraft was measured using microscopic air traffic simulation model. Daily capacity of the runways were analyzed based on the simulation outputs and the method to assess the yearly capacity is introduced. Using a microscopic simulation model named TAAM, we measure the average aircraft delay at various levels of flight demand, and then estimate the practical daily runway capacity. The estimated daily and annual runway capacities of Jeju airport are about 460 operations a day which is equal to 169,000 operations year. The paper discusses how to verify the simulation model, and also suggests potential enhancement of the method.

Conceptual Models for Evaluation of Urban Logistics Improvement (도시물류 개선 대안 평가를 위한 개념적 모형 정립)

  • 허윤수;남기찬;윤항묵
    • Journal of Korean Society of Transportation
    • /
    • v.19 no.5
    • /
    • pp.7-18
    • /
    • 2001
  • This study is concerned with theoretical aspects of urban logistics with the aim of revealing limitations of the literature, suggesting directions for further studies and developing a conceptual model for evaluating policy alternatives. Several limitations have been revealed and, based on these, the directions for further studies were suggested as more effort needs to be put on microscopic aspects of urban logistics ; and integrated conceptual evaluation models need to be developed. For the models it defined microscopic evaluation factors by the subject of urban logistics activities, and with these factors it established a conceptual model. Especially it introduced the simulation models developed recently to predict the route of freight vehicles and suggested how both microscopic and macroscopic aspects of urban logistics could be evaluated.

  • PDF

Discrete element numerical simulation of dynamic strength characteristics of expanded polystyrene particles in lightweight soil

  • Wei Zhou;Tian-shun Hou;Yan Yang;Yu-xin Niu;Ya-sheng Luo;Cheng Yang
    • Geomechanics and Engineering
    • /
    • v.34 no.5
    • /
    • pp.577-595
    • /
    • 2023
  • A dynamic triaxial discrete element numerical model of lightweight soil was established using the discrete element method to study the microscopic mechanism of expanded polystyrene (EPS) particles in the soil under cyclic loading. The microscopic parameters of the discrete element model of the lightweight soil were calibrated depending on the dynamic triaxial test hysteresis curves. Based on the calibration results, the effects of the EPS particles volume ratio and amplitude on the contact force, displacement field, and velocity field of the lightweight soil under different accumulated strains were studied. The results showed that the hysteresis curves of lightweight soil exhibit nonlinearity, hysteresis, and strain accumulation. The strain accumulated in remolded soil is mainly tensile strain, and that in lightweight soil is mainly compressive strain. As the volume ratio of EPS particles increased, the contact force first increased and then decreased, and the displacement and velocity of the particles increased accordingly. With an increase in amplitude, the dynamic stress of the particle system increased, and the accumulation rate of the dynamic strain of the samples also increased. At 5% compressive strain, the contact force of the particles changed significantly and the number of particles deflected in the direction of velocity also increased considerably. These results indicated that the cemented structure of the lightweight soil began to fail at a compressive strain of 5%. Thus, a compressive strain of 5% is more reasonable than the dynamic strength failure standard of lightweight soil.

Mobility and Safety Evaluation Methodology for the Locations of Hi-PASS Lanes Using a Microscopic Traffic Simulation Tool (미시교통시뮬레이션모형을 이용한 하이패스 차로 위치별 이동성 및 안전성 평가방법 연구)

  • Yun, Ilsoo;Han, Eum;Lee, Cheol-Ki;Rho, Jeong Hyun;Lee, Soojin;Kim, Sang Byum
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.12 no.1
    • /
    • pp.98-108
    • /
    • 2013
  • The number of Hi-Pass lanes became 793 lanes at 316 expressway tollgates in 2011 due to the increase in the Hi-Pass use. In spite of the increase in the number of Hi-Pass lanes, there have been increased potential risks in tollgates where vehicles using a Hi-Pass lane must weave with other vehicles using a TCS lane. Therefore, there is a need for study on the safety in tollgates. To this end, this study aims at developing a methodology to evaluate the performance measures of diverse location countermeasures of Hi-Pass lanes in an efficient and systematic way. This study measured the mobility, safety and the convenience of installation and operation of Hi-Pass lanes using a microscopic traffic simulation tool, the surrogate safety assessment model and survey. In addition, this study aggregated the above three performance indexes using weight factors estimated using the AHP technique. For the test site, Dongsuwon interchange was selected. After building the microscopic traffic simulation model for the test site, the location countermeasures of Hi-Pass lanes applicable to the test site were compared with each other in terms of the mobility, safety and installing and operating convenience. As a result, there has been no apparent difference in mobility index based on delays. However, the countermeasures where Hi-Pass lanes are located in inside lanes generally showed better safety performance based on the number of conflicts. In addition, countermeasures with neighboring Hi-Pass lanes were favorable in terms of the safety and the convenience of installation and operation. The methodology proposed in this study was found to be useful to support decision makings by providing critical and quantitative information regarding the mobility, safety and the convenience of installation and operation.