Browse > Article
http://dx.doi.org/10.12989/sem.2020.74.3.407

Experimental and numerical study on pre-peak cyclic shear mechanism of artificial rock joints  

Liu, Xinrong (School of Civil Engineering, Chongqing University)
Liu, Yongquan (School of Civil Engineering, Chongqing University)
Lu, Yuming (School of Civil Engineering, Chongqing University)
Kou, Miaomiao (School of Civil Engineering, Qingdao University of Technology)
Publication Information
Structural Engineering and Mechanics / v.74, no.3, 2020 , pp. 407-423 More about this Journal
Abstract
The pre-peak cyclic shear mechanism of two-order asperity degradation of rock joints in the direct shear tests with static constant normal loads (CNL) are investigated using experimental and numerical methods. The laboratory testing rock specimens contains the idealized and regular two-order triangular-shaped asperities, which represent the specific geometrical conditions of natural and irregular waviness and unevenness of rock joint surfaces, in the pre-peak cyclic shear tests. Three different shear failure patterns of two-order triangular-shaped rock joints can be found in the experiments at constant horizontal shear velocity and various static constant normal loads in the direct and pre-peak cyclic shear tests. The discrete element method is adopted to simulate the pre-peak shear failure behaviors of rock joints with two-order triangular-shaped asperities. The rock joint interfaces are simulated using a modified smooth joint model, where microscopic scale slip surfaces are applied at contacts between discrete particles in the upper and lower rock blocks. Comparing the discrete numerical results with the experimental results, the microscopic bond particle model parameters are calibrated. Effects of cyclic shear loading amplitude, static constant normal loads and initial waviness asperity angles on the pre-peak cyclic shear failure behaviors of triangular-shaped rock joints are also numerically investigated.
Keywords
Pre-peak cyclic shear; Two-order asperity degradation; Shear failure modes; DEM; Numerical simulation;
Citations & Related Records
Times Cited By KSCI : 15  (Citation Analysis)
연도 인용수 순위
1 Benmokrane, B., Mouchaorab, K.S. and Ballivy, G. (1994), "Laboratory investigation of shaft resistance of rock-socketed piers using the constant normal stiffness direct shear test", Can. Geotech. J., 31(3), 407-419.   DOI
2 PFC2D (2004), "Particle Flow Code in 2 Dimensions-Version 3.1", Itasca Cons Group, Minneapolis.
3 Sarfarazi, V. and Haeri, H. (2018), "Three-dimensional numerical modeling of effect of bedding layer on the tensile failure behavior in hollow disc models using Particle Flow Code (PFC3D)", Struct. Eng. Mech., 68(5), 537-547.   DOI
4 Seidel, J.P. and Haberfield, C.M. (2002), "A theoretical model for rock joints subjected to constant normal stiffness direct shear", Int. J. Rock Mech. Min. Sci., 39(5), 539-553.   DOI
5 Song, Z., Konietzky, H. and Herbst, M. (2019), "Bonded-particle model-based simulation of artificial rock subjected to cyclic loading", Acta Geotech., 14(4), 955-971.   DOI
6 Song, Z., Fruhwirt, T. and Konietzky, H. (2020), "Inhomogeneous mechanical behaviour of concrete subjected to monotonic and cyclic loading", Int J Fatigue, 132, 105383.   DOI
7 Wang, Y., Zhou, X. and Xu, X. (2016), "Numerical simulation of propagation and coalescence of flaws in rock materials under compressive loads using the extended non-ordinary state-based peridynamics", Eng. Fract. Mech., 163, 248-273.   DOI
8 Wang, Y., Zhou, X. and Shou, Y. (2017), "The modeling of crack propagation and coalescence in rocks under uniaxial compression using the novel conjugated bond-based peridynamics", Int. J. Mech. Sci., 128-129, 614-643.   DOI
9 Wang, Y., Zhou, X., Wang, Y. and Shou, Y. (2018a), "A 3-D conjugated bond-pair-based peridynamic formulation for initiation and propagation of cracks in brittle solids", Int. J. Solids Struct., 134, 89-115.   DOI
10 Wang, Y., Zhou, X. and Kou, M. (2018b), "Peridynamic investigation on thermal fracturing behavior of ceramic nuclear fuel pellets under power cycles", Ceram. Int., 44(10), 11512-11542.   DOI
11 Wang, Y., Zhou, X. and Kou, M. (2018c), "Numerical studies on thermal shock crack branching instability in brittle solids", Eng. Fract. Mech., 204, 157-184.   DOI
12 Wang, Y., Zhou, X. and Kou, M. (2018d), "A coupled thermo-mechanical bond-based peridynamics for simulating thermal cracking in rocks", Int. J. Fract., 211(1-2), 13-42   DOI
13 Wang, Y., Zhou, X. and Kou, M. (2019a), "Three-dimensional numerical study on the failure characteristics of intermittent fissures under compressive-shear loads", Acta Geotech., 14(4), 1161-1193   DOI
14 Wang, Y., Zhou, X. and Kou, M. (2019b), "An improved coupled thermo-mechanic bond-based peridynamic model for cracking behaviors in brittle solids subjected to thermal shocks.", Eur. J. Mech. A-Solid, 73, 282-305   DOI
15 Wang, L., Xu, J., Wang, J. and Karihaloo, B.L. (2019c), "A mechanism-based spatiotemporal non-local constitutive formulation -for elastodynamics of composites", Mech. Mater., 128, 105-116.   DOI
16 Wang, L., Xu, J. and Wang, J. (2019d), "Elastodynamics of Linearized Isotropic State-Based Peridynamic Media", J. Elast., 137, 157-176.   DOI
17 Xie, Y., Cao, P., Liu, J. and Dong, L. (2016), "Influence of crack surface friction on crack initiation and propagation: A numerical investigation based on extended finite element method", Comput. Geotech., 74, 1-14   DOI
18 Yang, Z.Y., Di, C.C. and Yen, K.C. (2001), "The effect of asperity order on the roughness of rock joints", Int. J. Rock Mech. Min. Sci., 38(5), 745-752   DOI
19 Zhang, X.P. and Wong, L.N.Y. (2012), "Cracking processes in rock-like material containing a single flaw under uniaxial compression: a numerical study based on parallel bonded-particle model approach", Rock Mech. Rock Eng., 45(5), 711-737.   DOI
20 Yang, D., Zhang, D., Niu, S., Dang, Y., Feng, W. and Ge, S. (2018) "Experiment and study on mechanical property of sandstone post-peak under the cyclic loading and unloading", Geotech. Geol. Eng., 36(3), 1609-1620.   DOI
21 Zheng, B. and Qi, S. (2012), "A new index to describe joint roughness coefficient (JRC) under cyclic shear", Eng. Geol., 212, 72-85.   DOI
22 Zhou, H., Meng, F., Zhang, C., Hu, D., Lu, J. and Xu, R (2016) "Investigation of the acoustic emission characteristics of artificial saw-tooth joints under shearing condition", Acta Geotech., 11(4), 925-939.   DOI
23 Zhou, X.P. and Wang, Y.T. (2016) "Numerical simulation of crack propagation and coalescence in pre-cracked rock-like Brazilian disks using the non-ordinary state-based peridynamics", Int. J. Rock Mech. Min. Sci., 89, 235-249.   DOI
24 Zhou, X., Wang, Y., Shou, Y. and Kou, M. (2018), "A novel conjugated bond linear elastic model in bond-based peridynamics for fracture problems under dynamic loads", Eng. Fract. Mech., 188, 151-183.   DOI
25 Zhou, Z., Cai, X., Li, X., Cao, W. and Du, X. (2019a), "Dynamic Response and Energy Evolution of Sandstone Under Coupled Static-Dynamic Compression: Insights from Experimental Study into Deep Rock Engineering Applications", Rock Mech. Rock Eng., 1-27.
26 Zhou, Z., Wang, H., Cai, X., Chen, L., Yude, E. and Chen, R. (2019b), "Damage Evolution and Failure Behavior of Post-Mainshock Damaged Rocks under Aftershock Effects", Energies, 12(23), 4429.   DOI
27 Cho, N., Martin, C.D. and Sego, D.C. (2007), "A clumped particle model for rock", Int. J. Rock Mech. Min. Sci., 44(7), 997-1010.   DOI
28 Zhou, X.P., Wang, Y.T., Zhang, J.Z. and Kou, M.M. (2019c), "Fracturing behavior study of three-flawed specimens by uniaxial compression and 3D digital image correlation: sensitivity to brittleness", Rock Mech. Rock Eng., 52(3), 691-718.   DOI
29 Cao, R.H., Cao, P., Lin, H., Pu, C. and Ke, O. (2016), "Mechanical behavior of brittle rock-like specimens with pre-existing fissures under uniaxial loading: experimental studies and particle mechanics approach", Rock Mech. Rock Eng., 49(3), 763-783.   DOI
30 Cao, R.H., Cao, P., Lin, H., Ma, G. and Chen, Y. (2018), "Failure characteristics of intermittent fissures under a compressive-shear test: Experimental and numerical analyses", Theor. Appl. Fract. Mech., 96, 740-757.   DOI
31 Dang, W., Konietzky, H. and Fruhwirt, T. (2016), "Direct shear behavior of a plane joint under dynamic normal load (DNL) conditions", Eng. Geol., 213, 133-141.   DOI
32 Dang, W.G., Konietzky, H. and Chang, L. (2018), "Velocity-frequency-amplitude-dependent frictional resistance of planar joints under dynamic normal load (DNL) conditions", Tunnel Undergr. Space Technol., 79, 27-34.   DOI
33 Dang, W., Konietzky, H., Fruhwirt, T. and Herbst, M. (2019), "Cyclic Frictional Responses of Planar Joints Under Cyclic Normal Load Conditions: Laboratory Tests and Numerical Simulations", Rock Mech. Rock Eng. doi:10.1007/s00603-019-01910-9.
34 Eshiet, K. and Sheng, Y. (2014), "Investigation of geomechanical responses of reservoirs induced by carbon dioxide storage", Environ. Earth. Sci., 71(9), 3999-4020.   DOI
35 Fathi, A., Moradian, Z., Rivard, P. and Ballivy, G. (2016), "Shear mechanism of rock joints under pre-peak cyclic loading condition", Int. J. Rock Mech. Min. Sci., 83, 197-210.   DOI
36 Eshiet, K. and Shen, Y. (2017), "The role of rock joint frictional strength in the containment of fracture propagation", Acta Geotech., 12(4), 897-920.   DOI
37 Cai, X., Zhou, Z., Liu, K., Du, X. and Zhang, H. (2019), "Water-weakening effects on the mechanical behavior of different rock types: phenomena and mechanisms", Appl. Sci., 9(20), 4450.   DOI
38 Fakhimi, A. (2004), "Application of slightly overlapped circular particles assembly in numerical simulation of rocks with high friction angles", Eng. Geol., 74(1-2), 129-138.   DOI
39 Ferrero, A.M., Migliazza, M. and Tebaldi, G. (2010), "Development of a new experimental apparatus for the study of the mechanical behavior of a rock discontinuity under direct and cyclic loads", Rock Mech. Rock Eng., 43(6), 685-695.   DOI
40 Gu, D.M., Huang, D., Yang, W.D., Zhu, J.L. and Fu, G.Y. (2017), "Understanding the triggering mechanism and possible kinematic evolution of a reactivated landslide in the Three Gorges Reservoir", Landslides, 14(6), 2073-2087.   DOI
41 Haeri, H., Sarfarazi, V., Zhu, Z., Hedayat, A., Nezamabadi, M.F. and Karbala M. (2018a), "Simulation of crack initiation and propagation in three point bending test using PFC2D", Struct. Eng. Mech., 66(4), 453-463.   DOI
42 Haeri, H., Sarfarazi, V., Zhu, Z. and Lazemi, H.A. (2018b), "Investigation of the effects of particle size and model scale on the UCS and shear strength of concrete using PFC2D", Struct. Eng. Mech., 67(5), 505-516.   DOI
43 Huang, T.H., Chang, C.S. and Chao, C.Y. (2002), "Experimental and mathematical modeling for fracture of rock joint with regular asperities", Eng. Fract. Mech., 69(17), 1977-1996.   DOI
44 Haeri, H., Sarfarazi, V., Zhu, Z. and Marji, M.F. (2018c), "Simulation of the tensile failure behaviour of transversally bedding layers using PFC2D", Struct. Eng. Mech., 67(5), 493-504.   DOI
45 Haeri, H., Sarfarazi, V. and Zhu, Z. (2018d), "PFC3D simulation of the effect of particle size on the single edge-notched rectangle bar in bending test", Struct. Eng. Mech., 68(4), 497-505.   DOI
46 Haeri, H., Sarfarazi, V. and Zhu, Z. (2018e), "Numerical simulation of the effect of bedding layer geometrical properties on the punch shear test using PFC3D", Struct. Eng. Mech., 68(4), 507-517.   DOI
47 Huang, D., Cen, D., Ma, G. and Huang, R. (2015), "Step-path failure of rock slopes with intermittent joints", Landslides, 12(5), 911-926.   DOI
48 Huang, Y.H., Yang, S.Q. and Zhao, J. (2016), "Three-Dimensional Numerical Simulation on Triaxial Failure Mechanical Behavior of Rock-Like Specimen Containing Two Unparallel Fissures", Rock Mech. Rock Eng., 49(12), 4711-4729.   DOI
49 Huang, Y.H., Yang, S.Q. and Zhao, J. (2017), "Strength failure behavior and crack evolution mechanism of granite containing pre-existing non-coplanar holes: experimental study and particle flow modeling", Comput. Geotech., 88, 182-198.   DOI
50 Huang, Y.H., Yang, S.Q. and Tian, W.L. (2019), "Crack coalescence behavior of sandstone specimen containing two pre-existing flaws under different confining pressures", Theor. Appl. Fract. Mech., 99, 118-130.   DOI
51 Jiang, Y., Xiao, J., Tanabashi, Y. and Mizokamib, T. (2004) "Development of an automated servo-controlled direct shear apparatus applying a constant normal stiffness condition", Int. J. Rock Mech. Min. Sci., 41(2), 275-286.   DOI
52 Huang, Y.H. and Yang, S.Q. (2019), "Mechanical and cracking behavior of granite containing two coplanar flaws under conventional triaxial compression", Int. J. Damage Mech., 28(4), 590-610.   DOI
53 Jafari, M.K., Hosseini, K.A., Pellet, F., Boulon, M. and Buzzi, O. (2003), "Evaluation of shear strength of rock joints subjected to cyclic loading", Soil Dyn. Earthq. Eng., 23(7), 619-630.   DOI
54 Jafari, M.K., Pellet, F., Boulon, M. and Amini Hosseini, K. (2004), "Experimental study of mechanical behavior of rock joints under cyclic loading", Rock Mech. Rock Eng., 37(1), 3-23.   DOI
55 Johnston, I.W., Lam, T.S. and Williams, A.F. (1987), "Constant normal stiffness direct shear testing for socketed pile design in weak rock", Geotechnique 37(1), 83-89.   DOI
56 Kou, M.M., Lian, Y.J. and Wang, Y.T. (2019a), "Numerical investigations on crack propagation and crack branching in brittle solids under dynamic loading using bond-particle mode", Eng. Fract. Mech., 212, 41-56.   DOI
57 Kou, M., Liu, X., Tang, S. and Wang, Y. (2019b), "3-D X-ray computed tomography on failure characteristics of rock-like materials under coupled hydro-mechanical loading", Theor. Appl. Fract. Mech., 104, 102396.   DOI
58 Kou, M., Han, D., Xiao, C. and Wang, Y. (2019c), "Dynamic fracture instability in brittle materials: Insights from DEM simulations", Struct. Eng. Mech., 71(1), 65-75.   DOI
59 Lee, H.S., Park, Y.J., Cho, T.F. and You, K.H. (2001), "Influence of asperity degradation on the mechanical behavior of rough rock joints under cyclic shear loading", Int. J. Rock Mech. Min. Sci., 38(7), 967-980.   DOI
60 Kou, M., Liu, X., and Wang, Y. (2020), "Study on rock fracture behavior under hydromechanical loading by 3-D digital reconstruction. Structural Engineering and Mechanics", Struct. Eng. Mech., 74(2), 1-14.
61 Li, X. and Chen, J. (2017). "An extended cohesive damage model for simulating arbitrary damage propagation in engineering materials", Comput. Methods Appl. Mech. Engrg., 315, 744-759.   DOI
62 Li, X., Gao, W. and Liu, W. (2019), "A mesh objective continuum damage model for quasi-brittle crack modelling and finite element implementation", Int. J. Damage Mech., 28(9), 1299-1322.   DOI
63 Liu, Y., Dai, F., Zhao, T. and Xu, N.W. (2017), "Numerical investigation of the dynamic properties of intermittent jointed rock models subjected to cyclic uniaxial compression", Rock Mech. Rock Eng., 50(1), 89-112.   DOI
64 Mehrian, S. Z., Amrei, S. R., Maniat, M. and Nowruzpour Mehrian, S.M. (2016), "Structural health monitoring using optimising algorithms based on flexibility matrix approach and combination of natural frequencies and mode shapes", Int. J. Struct. Eng., 7(4), 398-411.   DOI
65 Meng, F., Zhou, H., Li, S., Zhang, C., Wang, Z., Kong, L. and Zhang, L. (2016), "Shear behaviour and acoustic emission characteristics of different joints under various stress levels", Rock Mech. Rock Eng., 49(12), 4919-4928.   DOI
66 Meng, F., Zhou, H., Wang, Z., Zhang, C., Li, S., Zhang, L. and Kong, L. (2018a), "Characteristics of asperity damage and its influence on the shear behavior of granite joints", Rock Mech. Rock Eng., 51(2), 429-449.   DOI
67 Mohammed, T.J., Bakar, B.H.A. and Bunnori, A.B. (2015), "Strengthening of reinforced concrete beams subjected to torsion with UHPFC composites", Struct. Eng. Mech., 56(1), 123-136.   DOI
68 Meng, F., Wong, L.N.Y., Zhou, H. and Wang, Z. (2018b), "Comparative study on dynamic shear behavior and failure mechanism of two types of granite joint", Eng. Geol., 245, 356-369.   DOI
69 Mirzaghorbanali, A, Nemcik, J. and Aziz, N. (2014a), "Effects of cyclic loading on the shear behavior of infilled rock joints under constant normal stiffness conditions", Rock Mech. Rock Eng., 47(4), 1373-1391.   DOI
70 Mirzaghorbanali, A., Nemcik, J. and Aziz, N. (2014b), "Effect of shear rate on cyclic loading shear behavior of rock joints under constant normal stiffness conditions", Rock Mech. Rock Eng., 47(5), 1931-1938.   DOI
71 Moradian, Z.A., Ballivy, G., Rivard, P., Gravel, C. and Rousseau, B. (2010), "Evaluating damage during shear tests of rock joints using acoustic emission", Int. J. Rock Mech. Min. Sci., 47(4), 590-598.   DOI
72 Moradian, Z.A., Ballivy, G. and Rivard, P. (2012), "Correlating acoustic emission sources with damaged zones during direct shear test of rock joints", Can. Geotech. J., 49(6), 710-718.   DOI
73 Moes, N. and Belytschko, T. (2002), "Extended finite element method for cohesive crack growth", Eng. Fract. Mech., 69(7), 813-833.   DOI
74 Nanthakumar, S., Lahmer, T., Zhuang, X., Zi, G. and Rabczuk, T. (2016), "Detection of ma-terial interfaces using a regularized level set method in piezoelectric structures", Inverse Probl. Sci. Eng., 24(1), 153-176.   DOI
75 Nowruzpour, M., Sarkar, S., Reddy, J.N. and Roy, D. (2019), "A derivative-free upscaled theory for analysis of defects", J. Mech. Phys. Solids, 122, 89-501.
76 Park, J.W. and Song, J.J. (2009), "Numerical simulation of a direct shear test on a rock joint using a bonded-particle model", Int. J. Rock Mech. Min. Sci., 46(8), 1315-1328.   DOI
77 Nowruzpour, M. and Reddy, J.N. (2018), "Unification of local and nonlocal models within a stable integral formulation for analysis of defects", Int. J. Eng. Sci., 132, 45-59.   DOI
78 Nowruzpour Mehrian, S.M., Roozbahani, M.M. and Mehrian S.Z., Fathi, A. (2013), "Comprehensive Investigation in Buckling and Free Vibration of Laminate Composite cylindrical Shell", J. Bas. Appl. Sci. Res., 3(5), 195-205.
79 Ooi, L.H. and Carter, J.P. (1987), "A constant normal stiffness direct shear device for static and cyclic loading", ASTM Geotech. Test J., 10(1), 3-12.   DOI
80 Potyondy, D.O. and Cundall, P.A. (1998), "Modeling notch-formation mechanisms in the URL mine-by test tunnel using bonded assemblies of circular particles", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 35(4-5), 510-511.   DOI
81 Potyondy D.O. and Cundall, P.A. (2004), "A bonded-particle model for rock", Int. J. Rock Mech. Min. Sci., 41(8), 1329-1364.   DOI
82 Amiri, F., Anitescu, C., Arroyo, M., Bordas, S. and Rabczuk, T. (2014), "XFEM interpolants, a seamless bridge between XFEM and enriched meshless methods", Comput. Mech., 53(1), 45-57.   DOI
83 Areias, P., Rabczuk, T. and Dias-da Costa, D. (2013), "Element-wise fracture algorithm based on rotation of edges", Eng. Fract. Mech., 110, 113-137.   DOI
84 Areias, P. and Rabczuk, T. (2017), "Steiner-point free edge cutting of tetrahedral meshes with applications in fracture", Finite Elem. Anal. Des., 132, 27-41.   DOI
85 Bahaaddini, M., Hagan, P.C., Mitra, R. and Khosravi, M.H. (2016), "Experimental and numerical study of asperity degradation in the direct shear test", Eng. Geol., 204, 41-52.   DOI
86 Asadi, M., Rasouli, V. and Barla, G. (2012), "A bonded particle model simulation of shear strength and asperity degradation for rough rock fractures", Rock Mech. Rock Eng., 45(5), 649-675.   DOI
87 Asadi, M.S., Rasouli, V. and Barla, G. (2013), "A laboratory shear cell used for simulation of shear strength and asperity degradation of rough rock fractures", Rock Mech. Rock Eng., 46(4), 683-699.   DOI
88 Bagde, M.N. and Petros, V. (2005), "Fatigue properties of intact sandstone samples subjected to dynamic uniaxial cyclical loading", Int. J. Rock Mech. Min. Sci., 42(2), 237-250.   DOI
89 Bahaaddini, M., Sharrock, G. and Hebblewhite, B.K. (2013), "Numerical direct shear tests to model the shear behaviour of rock joints", Comput. Geotech., 51, 101-115.   DOI
90 Bahaaddini, M., Hagan, P.C., Mitra, R. and Hebblewhite, B.K. (2014) "Scale effect on the shear behaviour of rock joints based on a numerical study", Eng. Geol., 181, 212-223.   DOI
91 Bandis, S.C., Lumsden, A.C. and Barton, N.R. (1981), "Experimental studies of scale effects on the shear behaviour of rock joints", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 18(1), 1-21.
92 Bandis, S.C., Lumsden, A.C. and Barton, N.R. (1983), "Fundamentals of rock joint deformation", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 20(6), 249-268.   DOI
93 Barton, N. (1973), "Review of a new shear-strength criterion for rock joints", Eng. Geol., 7(4), 287-332.   DOI
94 Barton, N. (1976), "The shear strength of rock and rock joints", Int J Rock Mech. Min. Sci. Geomech. Abstr., 19(9), 255-279.   DOI
95 Barton, N. and Choubey, V. (1977), "The shear strength of rock joints in theory and practice", Rock Mech., 10(1-2), 1-54.   DOI
96 Belem, T., Souley, M. and Homand, F. (2007), "Modeling surface roughness degradation of rock joint wall during direct and cyclic shearing", Acta Geotech., 2(4), 227-248.   DOI