• Title/Summary/Keyword: Micropore

Search Result 201, Processing Time 0.027 seconds

The Study on Surface Modification of Alumina Membrane by CVD (CVD에 의한 알루미나 멤브레인의 표면개질에 관한 연구)

  • 이동호;최두진;현상훈;고광백
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.12
    • /
    • pp.1349-1356
    • /
    • 1995
  • The change of permeation mechanism from Knudsen diffusion to micropore diffusion was observed after CVD modification of an alumina-sol coated alumina support which was prepared by slip coating process. Permselectivities of He/N2, H2/N2, and CO2/N2 were 5.67, 5.02, and 1.44, respectively. These values were higher than those under Knudsen diffusion controlled region.

  • PDF

A study on elemental mercury adsorption behaviors of nanoporous carbons with carbon dioxide activation

  • Bae, Kyong-Min;Park, Soo-Jin
    • Carbon letters
    • /
    • v.15 no.4
    • /
    • pp.295-298
    • /
    • 2014
  • In this work, nanoporous carbons (NPCs) were prepared by the self-assembly of polymeric carbon precursors and block copolymer template in the presence of tetraethyl orthosilicate and colloidal silica. The NPCs' pore structures and total pore volumes were analyzed by reference to $N_2$/77 K adsorption isotherms. The porosity and elemental mercury adsorption of NPCs were increased by activation with carbon dioxide. It could be resulted that elemental mercury adsorption ability of NPCs depended on their specific surface area and micropore fraction.

A Study on the Surface and Antibacterial Properties for M(Cd, Cu)-Activated Carbon (M(Cd, Cu)-활성탄의 표면 특성과 항균성에 관한 연구)

  • Oh, Won-Chun;Kim, Jong-Gyu;Kim, Myung-Kun
    • Analytical Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.105-110
    • /
    • 1999
  • The studies on the adsorption properties and the antibacterial effects of the Cd and Cu-treated activated carbon were carried out. From the adsorption studies on the series of these metal-treated activated carbons, typical Type-I isotherm was observed. The surface areas of the treated carbon obtained from BET equation were in the range of $1101-1418m^2/g$ for Cd-AC and of $1084-1361m^2/g$ for Cu-AC. Using ${\alpha}_s$-plot, the micropore volumes and pore size distribution were obtained. From the SEM study, it is also observed that many of micropores in activated carbon are blocked by window blocking effect of metals after the impregnation. Finally, antibacterial effects of M-activated carbon against Escherichia coli was discussed. From the study, the area of antibacterial activity becomes larger with the increase of the amount of metal treated.

  • PDF

Variation of Pore Structure of Coal-based Activated Carbon with Burn-off of Steam Activation (수증기 활성화법으로 제조된 석탄계 활성탄의 Burn-off에 따른 세공구조의 변화)

  • Lee, Song-Woo;Moon, Jang-Cheon;Lee, Chang-Han;Choi, Dong-Hoon;Ryu, Dong-Chun;Song, Seung-Koo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.12
    • /
    • pp.2141-2148
    • /
    • 2000
  • This study is to investigate changes of pore structure with different burn-off degree of steam activated carbons manufactured from domestic anthracite. The activated carbons were characterized by adsorption of nitrogen at 77 K. Steam activation substantially enhanced the porosity of the activated carbons. Burn-off increased linearly according to increasing activation time, and total pore volume and BET surface area increased with burn-off. Activation at $800^{\circ}C$ increased more micropore volume than that at $950^{\circ}C$. Activated carbons manufactured at high temperature had less microporosity than that at lower temperature, but had more developed macroporosity. The steam activation produced an enlargement of pore below $100{\AA}$ diameter in the activated carbons. Furthermore, the porosity in the $6{\sim}40{\AA}$ pore diameters range increased considerably with the degree of burn-off.

  • PDF

Development of an Sampling Tube for Organic Solvents and Study on the Adsorption Capacity of the Activated Charcoal (유기용제용 시료채취기 개발을 위한 활성탄 성능검정에 관한 연구)

  • Bai, Ya Soung;Park, Doo Young;Lim, Dai Soung;Park, Byung Moo
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.15 no.1
    • /
    • pp.8-18
    • /
    • 2005
  • Adsorption capacity for the charcoal were tasted in this study to verify the performance of them for the use of the sampling media in industrial hygiene field. Two set of experiments were conducted. The first experiment was to test performance of the tested charcoal tube that were assembled in the laboratory with the use of the GR grade charcoal. The other tests were investigate the adsorption capacity of the charcoal tested in this study and charcoals embedded in the commercial charcoal tubes. Known air concentration samples for benzene, toluene, and o-xylene were prepared by the dynamic chamber. 1. At low air concentration levels (0.1${\times}$TLV), there was no significant differences between the tested charcoal tubes and the SKC charcoal tubes. This implies that there is no defect with the adsorption capacity of the charcoal. 2. At high concentration with 60 minutes sampling, the breakthrough were found only in the tested charcoal while no breakthrough were shown in the SKC charcoal. 3. From the breakthrough tests for the charcoal, the micropore volume(Wo) were calculated by the curve fitting with the use of Dubinin/Radushkevich(D/R) adsorption isotherm equation. The calculated values were 0.687cc/g for SKC, 0.504cc/g for Sensidyne, and 0.419cc/g for the tested charcoal(Aldrich). 4. Adsorption capacities were obtained from the isotherm curves shown adsorption capacities at several levels of the challenge concentration. All range of the air concentration concerned in industrial hygiene, the SKC charcoal showed approximately two times of adsorption capacity compared to the tested charcoal.

A Study on the Adsorption Characteristics of Phenol in the presence of Humic Acid Using Activated Carbon Fiber (섬유상활성탄소를 이용한 Humic Acid 공존시 페놀의 흡착특성에 관한 연구)

  • Tak, Seong-Jae;Seo, Seong-Wen;Kim, Seong-Sun;Kim, Jin-Man
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.14 no.1
    • /
    • pp.54-61
    • /
    • 2000
  • Recently, our circumstances are threatened by an accident that leakage of under ground storage tank and illegal dumping of synthetic organic compounds at chemical plants and many treatment methods, Activated carbon adsorption, Ozonization, Membrane filtration and Photocatalystic oxidation, are developed to remove such a synthetic organic compounds. And it has reported that Activated carbon adsorption have a great removal efficiency to nondegradable matters and organic compounds which have a high molecular weight. Comparing with other adsorbents, Activated carbon adsorption have a worse efficiency when ad desorption speed is low. Thus improved type of adsorbents was invented and one of those is Activated Carbon Filter. The purpose of this study was getting information about adsorption characteristic phenol which can be applied Activated Carbon Fiber and Granular Activated Carbon. In detail, With comparing removal characteristics of phenol in the presence Humic Acid using Activated Carbon Fiber(ACF) and Granular Activated. Carbon(GAC), it is to certify an effective application of Activated Carbon Fiber. At the range of this study, Batch test, Isotherm adsorption test and Factorial analysis, following conclusion were obtained from the results of this study. Batch test was carried to know time of adsorption equilibrium. In this study about time of adsorption equilibrium by ACF was faster than GAC's, for developed micropore of ACF. From the result of phenol adsorption test, High removal rate of adsorption is shown at pH 5. The result of lsotherm adsorption test, it has represented that the Freundlich's isotherm is most suitable one in others, that a ACF's adsorption capacity is more excellent than GAC's. Adsorption of phenol exiting humic acid is decreased getting raised humic acid concentration. Since ACF's micropore is developed at this time, an effect of high molecular humic acid is lower. Factorial analysis was carried to know about Main effect which was injection dosage of adsorbent in the range of this study.

  • PDF

Biomass Waste, Coffee Grounds-derived Carbon for Lithium Storage

  • Um, Ji Hyun;Kim, Yunok;Ahn, Chi-Yeong;Kim, Jinsoo;Sung, Yung-Eun;Cho, Yong-Hun;Kim, Seung-Soo;Yoon, Won-Sub
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.163-168
    • /
    • 2018
  • Biomass waste-derived carbon is an attractive alternative with environmental benignity to obtain carbon material. In this study, we prepare carbon from coffee grounds as a biomass precursor using a simple, inexpensive, and environmentally friendly method through physical activation using only steam. The coffee-derived carbon, having a micropore-rich structure and a low extent of graphitization of disordered carbon, is developed and directly applied to lithium-ion battery anode material. Compared with the introduction of the Ketjenblack (KB) conducting agent (i.e., coffee-derived carbon with KB), the coffee-derived carbon itself achieves a reversible capacity of ~200 mAh/g (0.54 lithium per 6 carbons) at a current density of 100 mA/g after 100 cycles, along with excellent cycle stability. The origin of highly reversible lithium storage is attributed to the consistent diffusion-controlled intercalation/de-intercalation reaction in cycle life, which suggests that the bulk diffusion of lithium is favorable in the coffee-derived carbon itself, in the absence of a conducting agent. This study presents the preparation of carbon material through physical activation without the use of chemical activation agents and demonstrates an application of coffee-derived carbon in energy storage devices.

Separation of $CO_2$ and $N_2$ with a NaY Zeolite Membrane under Various Permeation Test Conditions

  • Cho, Churl-Hee;Yeo, Jeong-Gu;Ahn, Young-Soo;Han, Moon-Hee;Hyun, Sang-Hoon
    • Korean Membrane Journal
    • /
    • v.8 no.1
    • /
    • pp.21-30
    • /
    • 2006
  • A faujasite NaY zeolite membrane was prepared on a tubular ${\alpha}-Al_2O_3$ support by the secondary growth process, and effects of permeation test conditions on the $CO_2/N_2$ separation were investigated. A NaY zeolite membrane with good $CO_2/N_2$ separation was successfully synthesized by using the hydrothermal solution ($Al_2O_3:SiO_2:Na_2O:H_2O$ = 1:6:14:840 in a molar base): at a permeation temperature of $30^{\circ}C$, its $CO_2$ permeance and $CO_2/N_2$ separation factor were $2.5{\times}10^{-7}mol/m^2secPa$ and 34, respectively. The $CO_2$ and $N_2$ permeations were highly dependent on permeation test conditions (feed composition, feeding rate, feed pressure, He sweeping rate and permeation temperature). The results indicated that (i) $CO_2$ and $N_2$ permeations through NaY zeolite membrane are governed by surface and micropore diffusions, respectively, (ii) the preparation of NaY zeolite membrane with a large permeating area is one of the most difficult hurdles for its real applications, and (iii) the retardation of $N_2$ permeation is an effective key to improve $CO_2/N_2$ separation factor in NaY zeolite membrane.

($H_2S$ Adsorption Characteristics of $KIO_3$ Impregnated Activated Carbon (($KIO_3$ 첨착활성탄의 황화수소 흡착 성능평가)

  • Kim, Jun-Suk;Kim, Myung-Chan;Kang, Eun-Jin;Kim, Myung-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.72-79
    • /
    • 2003
  • The impregnated activated carbons were prepared by the incipient wetness method with the contents of $KIO_3$ varied from 1.0${\sim}$10 wt% as the impregnation material. The specific surface area and micropore volume of the rice hulls activated carbon were $2,600{\sim}2,800$ $m^2$/g and 1.1${\sim}$1.4 cc/g, respectively. With increasing the contents of impregnation materials, the surface area and micropore volume decreased by 3${\sim}$21%. However, The amounts of hydrogen sulfide adsorbed increased by 2.1${\sim}$2.8 times depending on the impregnation content. The optimum contents of $KIO_3$ were 2.4 wt%. Although the breakthrough time and adsorption capacity of hydrogen sulfide decreased with increasing temperature in the case of the unimpregnated activated carbons, they increased by 1.2${\sim}$ 3.2 times for the case of the impregnated activated carbons. The optimum aspect ratio(L/D) was 1.0 and the adsorption amount of hydrogen sulfide enhanced with increasing the gas flow rate. The regeneration temperature was determined as 400$^{\circ}C$ from the TGA experiment. The adsorption capacity of hydrogen sulfide with the impregnated activated carbon decreased gradually as the regeneration continued. The hydrogen sulfide adsorption amount of the regenerated activated carbon up to 4 times was still higher than that of the unimpregnated activated carbon.

Hemorheological measurements in experimental animals: further consideration of cell size - pore size relations in filtrometry

  • Nemeth, Norbert;Baskurt, Oguz K.;Meiselman, Herbert J.;Furka, Istvan;Miko, Iren
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.3
    • /
    • pp.155-160
    • /
    • 2009
  • Micropore filtration of dilute red blood cell (RBC) suspensions is a widely known method for determining red blood cell deformability. Use of this method for cells from various laboratory animal species does require considering the effects of the cell size to pore size ratio and of suspension hematocrit. In general, previous animal studies have utilized 5% hematocrit suspensions and five micron pores, and thus conditions similar to human clinical laboratory practice. However, when used for repeated sampling from small laboratory animals or for parallel multiple samples from different sites in large laboratory animals, the volume of blood sampled and hence the hematocrit of the test suspension may be limited. Our results indicate that hematocrit levels yielding stable values of RBC pore transit time are pore size and species specific: three micron pores = $2{\sim}5%$ for dog and $3{\sim}5%$ for rat; five micron pores $3{\sim}5%$ for dog and $1{\sim}5%$ for rat. An analytical approach using a common expression for calculating transit time is useful for determining the sensitivity of this time to hematocrit alterations and hence to indicate hematocrit levels that may be problematic.