Hemorheological measurements in experimental animals: further consideration of cell size - pore size relations in filtrometry

  • Nemeth, Norbert (Department of Operative Techniques and Surgical Research, Institute of Surgery, Medical and Health Science Center, University of Debrecen) ;
  • Baskurt, Oguz K. (Department of Physiology, Akdeniz University, Faculty of Medicine) ;
  • Meiselman, Herbert J. (Department of Physiology and Biophysics, University of Southern California, Keck School of Medicine) ;
  • Furka, Istvan (Department of Operative Techniques and Surgical Research, Institute of Surgery, Medical and Health Science Center, University of Debrecen) ;
  • Miko, Iren (Department of Operative Techniques and Surgical Research, Institute of Surgery, Medical and Health Science Center, University of Debrecen)
  • Published : 2009.09.30

Abstract

Micropore filtration of dilute red blood cell (RBC) suspensions is a widely known method for determining red blood cell deformability. Use of this method for cells from various laboratory animal species does require considering the effects of the cell size to pore size ratio and of suspension hematocrit. In general, previous animal studies have utilized 5% hematocrit suspensions and five micron pores, and thus conditions similar to human clinical laboratory practice. However, when used for repeated sampling from small laboratory animals or for parallel multiple samples from different sites in large laboratory animals, the volume of blood sampled and hence the hematocrit of the test suspension may be limited. Our results indicate that hematocrit levels yielding stable values of RBC pore transit time are pore size and species specific: three micron pores = $2{\sim}5%$ for dog and $3{\sim}5%$ for rat; five micron pores $3{\sim}5%$ for dog and $1{\sim}5%$ for rat. An analytical approach using a common expression for calculating transit time is useful for determining the sensitivity of this time to hematocrit alterations and hence to indicate hematocrit levels that may be problematic.

Keywords

References

  1. Baskurt, O. K., 1996, Deformability of red blood cells from different species studied by resistive pulse shape analysis technique, Biorheology 33, 169-179 https://doi.org/10.1016/0006-355X(96)00014-5
  2. Baskurt, O. K., T. C. Fisher and H. J. Meiselman, 1996, Sensitivity of the cell transit analyser (CTA) to alterations of red blood cell deformability: role of cell size-pore size ratio and sample preparation, Clin. Hemorheol. 16, 753-765
  3. Baskurt, O. K., M. Boynard, G. C. Cokelet, P. Connes, B. M. Cooke, S. Forconi, F. Liao, M. R. Hardeman, F. Jung, H. J. Meiselman, G. Nash, N. Nemeth, B. Neu, B. Sandhagen, S. Shin, G. Thurston and J. L. Wautier, 2009, New guidelines for hemorheological laboratory techniques, Clin. Hemorheol. Microcirc. 42, 75-97
  4. Bernat, S. I., L. Bogar, M. Csomai, S. Imre, I. Juricskay, L. Kollar, Z. Novak, Zs. Pecsvarady, E. Pongracz, I. Rozsos and K. Toth, 2005, Modszertani utmutato a hemoreologiai meresek vegzesehez [Guidelines for hemorheoolgical measurements], Erbetegsegek Suppl 1, 27-33
  5. Chen, D., and D.K. Kaul, 1994, Rheologic and hemodynamic characteristics of red cells of mouse, rat and human, Biorheology 31, 103-113
  6. Chien, S., E. A. Schmalzer, M. M. L. Lee, T. Impelluso and R. Skalak, 1983, Role of white blood cells in filtration of blood cell suspension, Biorheology 20, 11-27
  7. Chien, S., S. Usami, R. J. Dellenback and C. A. Bryant, 1971, Comparative hemorheology - hematological implications of species differences in blood viscosity, Biorheology 8, 35-57
  8. Dormandy, J., P. Flute, A. Matrai, L. Bogar and J. Mikita, 1985, The new St. George's blood filtrometer, Clin. Hemorheol. 5, 975-983
  9. Hardeman, M. R., P. T. Goedhart and S. Shin, 2007, Methods in hemorheology, in: Handbook of Hemorheology and Hemodynamics, Baskurt, O. K., M. R. Hardeman, M. W. Rampling and H. J. Meiselman, eds, IOS Press, Amsterdam, The Netherlands, pp. 242-266
  10. Koltai, K., G. Feher., G. Kesmarky, Z. Keszthely, L. Czopf and K. Toth, 2006, The effect of blood glucose levels on hemorheological parameters, plateelet activation and aggregation in oral glucose tolerance test, Clin. Hemorheol. Microcirc. 35, 517-525
  11. Koutsouris, D., R. Guillet, R. B. Wenby and H. J. Meiselman, 1989, Determination of erythrocyte transit times through micropores. II. 1nfluence of experimental and physicochemical factors, Biorheology 26, 881-898
  12. Lee, W. G, H. Bang, H. Yun, J. Lee, J. Park, J. K. Kim, S. Chung, K. Cho, C. Chung, D. C. Han and J. K. Chang, 2007, In-chip erythrocyte deformability test under optical pressure, Lab. Chip. 7, 516-519 https://doi.org/10.1039/b614912j
  13. Lindmark, K. and K. G. Engstrom, 1996, Analysis of flow acceleration during erythrocyte filtration: dependence of hematocrit and cell rigidity, Biorheology 33, 379-395 https://doi.org/10.1016/0006-355X(96)00029-7
  14. Lipowsky, H. H., L. E. Cram, W. Justice and M. J. Eppihimer, 1993, Effect of erythrocyte deformability on in vivo red cell transit time and hematocrit and their correlation with in vitro filterability, Microvasc. Res. 46, 43-64 https://doi.org/10.1006/mvre.1993.1034
  15. Lisovskaya, I. L., E. S. Shurkhina, V. M. Nesterenko, J. M. Rozenberg and F. I. Ataullakhov, 1998, Determination of the content of nonfilterable cells in erythrocyte suspensions as a function of the medium osmolarity. Biorheology 35, 141-153 https://doi.org/10.1016/S0006-355X(99)80004-3
  16. Losco, P., G. Nash, P. Stone and J. Ventre, 2001, Comparison the effects of radiographic contrast media on dehydration and filterability of red blood cells from donors homozygous for hemoglobin A of hemoglobin S, Am. J. Hematol. 68. 149-158 https://doi.org/10.1002/ajh.1171
  17. Nash, G., 1990, Filterabiilty of blood cells: methods and clinical applications, Biorheology 27, 873-882
  18. Nemeth, N., G. Acs, T. Lesznyak, E. Brath, S. Imre, F. Urban, M. Menzel, I. Furka and I. Miko, 2004, [Experiences on measuring of red blood cell deformability in laboratory animals], Magy. Allatorvosok 126, 225-230. Hungarian
  19. Nemeth, N., A. Gulyas, A. Balint, K. Peto, E. Brath, F. Kiss, I. Furka, O. K. Baskurt and I. Miko, 2006, Measurement of erythrocyte deformability and methodological adaptation for small-animal microsurgical models, Microsurgery 26, 33-37 https://doi.org/10.1002/micr.20207
  20. Nemeth, N., T. Lesznyak, M. Szokoly, I. Furka and I. Miko, 2006, Allopurinol prevents erythrocyte deformability impairing but not the hematological alterations after limb ischemiareperfusion in rats, J. Invest. Surg. 19, 47-56 https://doi.org/10.1080/08941930500444511
  21. Nemeth, N., T. Alexy, A. Furka, O. K. Baskurt, H. J. Meiselman, I. Furka and I. Miko, 2009, Inter-species differences in hematocrit to blood viscosity ratio, Biorheology 46, 155-165
  22. Nemeth, N., O. K. Baskurt, H. J Meiselman, F. Kiss, M. Uyuklll, T. Hever, E. Sajtos, P. Kenyeres, K. Toth, I. Furka and I. Miko, 2009, Storage of laboratory animal b1ood samples causes hemorheological alterations : Inter-species difference and the effects of duration and temperature, Korea-Aust. Rheol. J. 21, 127-133
  23. Matrai, A., H. Reid, L. Bogar, P. T. Flute and J. A. Dormandy, 1985, Initial filtration rate and initial clogging in the Hemorheometre, Biorheology 22, 275-284
  24. Meiselman, H. J., 1978, Rheology of shape-transformed human red cells, Biorheology 15, 225-237
  25. Meiselman, H. J., 1981, Morphological determinants of red blood cell deformabi1ity, J. Clin. Lab. Invest. 41 Suppl. 156, 27-34 https://doi.org/10.3109/00365518109097426
  26. Miko, I., N. Nemeth, S. Sipka Jr., E. Brath, K. Peto, A. Gulyas, I. Furka and R. Zhong, 2006, Hemorheological follow-up after splenectomy and spleen autotransplantation in mice, Microsurgery 26, 38-42 https://doi.org/10.1002/micr.20208
  27. Peto, K., N. Nemeth, E. Brath, E. I. Takacs, O. K. Baskurt, H. J. Meiselman, I. Furka and I. Miko, 2007, The effect of renal ischemia-reperfusion on hemorheological factors: preventive role of allopurinol. Clin. Hemorheol. Microcirc. 37, 347-358
  28. Pfafferott, C., R. Wenby and H. J. Meiselman, 1982, Morphologic and internal viscosity aspects of RBC rheologic behavior, Blood Cells 8, 65-78
  29. Plasenzotti, R., B. Stoiber, M. Posch and U. Windberger, 2004, Red blood cell deformability and aggregation behaviour in different animal species, Clin. Hemorheol. Microcirc. 31, 105-111
  30. Reinhart, W. H., S. Usami, E. A. Schmalzer, M. M. Lee and S. Chien, 1984, Evaluation of red blood cell filterability test: influences of pore size, hematocrit level, and flow rate, J. Lab. Clin. Med. 104, 501-516
  31. Schmalzer, E. A., R. Skalak, S. Usami, M. Vayo and S. Chien, 1983, Influence of red cell concentration on filtration of blood cell suspension, Biorheology 20, 29-40
  32. ICSH Expert Panel on Blood Rheology, 1986, Guidelines for measurement of blood viscosity and erythrocyte deformability, Clin, Hemorheol. 6, 439-453
  33. Usami, S., S. Chien and M. I. Gregersen, 1969, Viscometric characteristic of blood of the elephant, man, dog, sheep, and goat, Am, J. Physiol. 217, 884-890