Browse > Article
http://dx.doi.org/10.5714/CL.2014.15.4.295

A study on elemental mercury adsorption behaviors of nanoporous carbons with carbon dioxide activation  

Bae, Kyong-Min (Department of Chemistry, Inha University)
Park, Soo-Jin (Department of Chemistry, Inha University)
Publication Information
Carbon letters / v.15, no.4, 2014 , pp. 295-298 More about this Journal
Abstract
In this work, nanoporous carbons (NPCs) were prepared by the self-assembly of polymeric carbon precursors and block copolymer template in the presence of tetraethyl orthosilicate and colloidal silica. The NPCs' pore structures and total pore volumes were analyzed by reference to $N_2$/77 K adsorption isotherms. The porosity and elemental mercury adsorption of NPCs were increased by activation with carbon dioxide. It could be resulted that elemental mercury adsorption ability of NPCs depended on their specific surface area and micropore fraction.
Keywords
elemental mercury adsorption; ordered nanoporous carbons; $CO_2$ activation;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Peng X, Hu X, Fu D, Lam FLY. Adsorption removal of acid black 1 from aqueous solution using ordered mesoporous carbon. Appl Surf Sci, 294, 71 (2014). http://dx.doi.org/10.1016/j.apsusc.2013.11.157.   DOI   ScienceOn
2 Brunauer S, Emmett PH, Teller E. Adsorption of gases in multimolecular layers. J Am Chem Soc, 60, 309 (1938). http://dx.doi.org/10.1021/ja01269a023.   DOI
3 Dubinin MM, Plavnik GM. Microporous structures of carbonaceous adsorbents. Carbon, 6, 183 (1968). http://dx.doi.org/10.1016/0008-6223(68)90302-3.   DOI   ScienceOn
4 Adelodun AA, Lim YH, Jo YM. Surface oxidation of activated carbon pellets by hydrogen peroxide for preparation of $CO_2$ adsorbent. J Ind Eng Chem, 20, 2130 (2014). http://dx.doi.org/10.1016/j.jiec.2013.09.042.   DOI   ScienceOn
5 Kim BJ, Lee YS, Park SJ. Novel porous carbons synthesized from polymeric precursors for hydrogen storage. Int J Hydrogen Energy, 33, 2254 (2008). http://dx.doi.org/10.1016/j.ijhydene.2008.02.019.   DOI   ScienceOn
6 Park SJ, Kim BJ. Influence of oxygen plasma treatment on hydrogen chloride removal of activated carbon fibers. J Colloid Interface Sci, 275, 590 (2004). http://dx.doi.org/10.1016/j.jcis.2004.03.011.   DOI   ScienceOn
7 Im JS, Kwon O, Kim YH, Park SJ, Lee YS. The effect of embedded vanadium catalyst on activated electrospun CFs for hydrogen storage. Microporous Mesoporous Mater, 115, 514 (2008). http://dx.doi.org/10.1016/j.micromeso.2008.02.027.   DOI   ScienceOn
8 Babel K, Janasiak D, Jurewicz K. Electrochemical hydrogen storage in activated carbons with different pore structures derived from certain lignocellulose materials. Carbon, 50, 5017 (2012). http://dx.doi.org/10.1016/j.carbon.2012.06.030.   DOI
9 Kubota M, Hata A, Matsuda H. Preparation of activated carbon from phenolic resin by KOH chemical activation under microwave heating. Carbon, 47, 2805 (2009). http://dx.doi.org/10.1016/j.carbon.2009.06.024.   DOI   ScienceOn
10 Park SJ, Park BJ, Ryu SK. Electrochemical treatment on activated carbon fibers for increasing the amount and rate of Cr(VI) adsorption. Carbon, 37, 1223 (1999). http://dx.doi.org/10.1016/S0008-6223(98)00318-2.   DOI   ScienceOn
11 Bansal RC, Goyal M. Activated Carbon Adsorption, Taylor & Francis, Boca Raton, FL (2005).
12 Tang L, Yang GD, Zeng GM, Cai Y, Li SS, Zhou YY, Pang Y, Liu YY, Zhang Y, Luna B. Synergistic effect of iron doped ordered mesoporous carbon on adsorption-coupled reduction of hexavalent chromium and the relative mechanism study. Chem Eng J, 239, 114 (2014). http://dx.doi.org/10.1016/j.cej.2013.10.104.   DOI
13 Kim BJ, Lee YS, Park SJ. A study on the hydrogen storage capacity of Ni-plated porous carbon nanofibers. Int J Hydrogen Energy, 33, 4112 (2008). http://dx.doi.org/10.1016/j.ijhydene.2008.05.077.   DOI   ScienceOn
14 Fu Y, Ming H, Zhou Q, Jin L, Li X, Zheng J. Nitrogen-doped carbon coating inside porous $TiO_2$ using small nitrogen-containing molecules for improving performance of lithium-ion batteries. Electrochim Acta, 134, 478 (2014). http://dx.doi.org/10.1016/j.electacta.2014.04.130.   DOI
15 Park SJ, Jang YS, Shim JW, Ryu SK. Studies on pore structures and surface functional groups of pitch-based activated carbon fibers. J Colloid Interface Sci, 260, 259 (2003). http://dx.doi.org/10.1016/S0021-9797(02)00081-4.   DOI   ScienceOn
16 Park SJ, Kim BJ. Ammonia removal of activated carbon fibers produced by oxyfluorination. J Colloid Interface Sci, 291, 597 (2005). http://dx.doi.org/10.1016/j.jcis.2005.05.012.   DOI   ScienceOn
17 Park SJ, Kim KD. Influence of activation temperature on adsorption characteristics of activated carbon fiber composites. Carbon, 39, 1741 (2001). http://dx.doi.org/10.1016/S0008-6223(00)00305-5.   DOI   ScienceOn
18 Belhachemi M, Jeguirim M, Limousy L, Addoun F. Comparison of $NO_2$ removal using date pits activated carbon and modified commercialized activated carbon via different preparation methods: effect of porosity and surface chemistry. Chem Eng J, 253, 121 (2014). http://dx.doi.org/10.1016/j.cej.2014.05.004.   DOI
19 Park SJ, Kim KD. Adsorption behaviors of $CO_2$ and $NH_3$ on chemically surface-treated activated carbons. J Colloid Interface Sci, 212, 186 (1999). http://dx.doi.org/10.1006/jcis.1998.6058.   DOI   ScienceOn
20 Lee HM, Kim HG, An KH, Kim BJ. Effects of pore structures on electrochemical behaviors of polyacrylonitrile-based activated carbon nanofibers by carbon dioxide activation. Carbon Lett, 15, 71 (2014). http://dx.doi.org/10.5714/CL.2014.15.1.071.   DOI   ScienceOn
21 Kim BJ, Bae KM, Park SJ. Elemental mercury vapor adsorption of copper-coated porous carbonaceous materials. Microporous Mesoporous Mater, 163, 270 (2012). http://dx.doi.org/10.1016/j.micromeso.2012.05.038.   DOI   ScienceOn
22 Du W, Yin L, Zhuo Y, Xu Q, Zhang L, Chen C. Catalytic oxidation and adsorption of elemental mercury over $CuCl_2$-impregnated sorbents. Ind Eng Chem Res, 53, 582 (2014). http://dx.doi.org/10.1021/ie4016073.   DOI
23 Bae KM, Kim BJ, Rhee KY, Park SJ, Roles of metal/activated carbon hybridization on elemental mercury adsorption. J Nanosci Nanotechnol, 14, 5811 (2014). http://dx.doi.org/10.1166/jnn.2014.8459.   DOI
24 Horowitz HM, Jacob DJ, Amos HM, Streets DG, Sunderland EM, Historical mercury releases from commercial products: global environmental implications. Environ Sci Technol. 48, 10242 (2014). http://dx.doi.org/10.1021/es501337j.   DOI
25 Hou W. Zhou J. Yu C, You S, Gao X, Luo Z, $Pd/Al_2O_3$ Sorbents for elemental mercury capture at high temperatures in syngas. Ind Eng Chem Res, 53, 9909 (2014). http://dx.doi.org/10.1021/ie501292a.   DOI
26 Im JS, Park SJ, Lee YS. Preparation and characteristics of electrospun activated carbon materials having meso- and macropores. J Colloid Interface Sci, 314, 32 (2007). http://dx.doi.org/10.1016/j.jcis.2007.05.033.   DOI   ScienceOn
27 Kim S, Park SJ. Effects of chemical treatment of carbon supports on electrochemical behaviors for platinum catalysts of fuel cells. J Power Sources, 159, 42 (2006). http://dx.doi.org/10.1016/j.jpowsour.2006.04.041.   DOI   ScienceOn
28 Hu Y, Wen Z, Wu X, Jin J. Low-cost shape-control synthesis of porous carbon film on $\beta$″-alumina ceramics for Na-based battery application. J Power Sources, 219, 1 (2012). http://dx.doi.org/10.1016/j.jpowsour.2012.07.025.   DOI
29 An J, Shang K, Lu N, Jiang Y, Wang T, Li J, Wu Y. Performance evaluation of non-thermal plasma injection for elemental mercury oxidation in a simulated flue gas. J Hazard Mater, 268, 237 (2014). http://dx.doi.org/10.1016/j.jhazmat.2014.01.022.   DOI
30 Darbha GK, Singh AK, Rai US, Yu E, Yu H, Chandra Ray P. Selective detection of mercury (II) ion using nonlinear optical properties of gold nanoparticles. J Am Chem Soc, 130, 8038 (2008). http://dx.doi.org/10.1021/ja801412b.   DOI