DOI QR코드

DOI QR Code

($H_2S$ Adsorption Characteristics of $KIO_3$ Impregnated Activated Carbon

($KIO_3$ 첨착활성탄의 황화수소 흡착 성능평가

  • Kim, Jun-Suk (Department of Chemical Engineering, Myongji University) ;
  • Kim, Myung-Chan (Department of Chemical Engineering, Myongji University) ;
  • Kang, Eun-Jin (Department of Chemical Engineering, Myongji University) ;
  • Kim, Myung-Soo (Department of Chemical Engineering, Myongji University)
  • 김준석 (명지대학교 공과대학 화학공학과) ;
  • 김명찬 (명지대학교 공과대학 화학공학과) ;
  • 강은진 (명지대학교 공과대학 화학공학과) ;
  • 김명수 (명지대학교 공과대학 화학공학과)
  • Published : 2003.03.31

Abstract

The impregnated activated carbons were prepared by the incipient wetness method with the contents of $KIO_3$ varied from 1.0${\sim}$10 wt% as the impregnation material. The specific surface area and micropore volume of the rice hulls activated carbon were $2,600{\sim}2,800$ $m^2$/g and 1.1${\sim}$1.4 cc/g, respectively. With increasing the contents of impregnation materials, the surface area and micropore volume decreased by 3${\sim}$21%. However, The amounts of hydrogen sulfide adsorbed increased by 2.1${\sim}$2.8 times depending on the impregnation content. The optimum contents of $KIO_3$ were 2.4 wt%. Although the breakthrough time and adsorption capacity of hydrogen sulfide decreased with increasing temperature in the case of the unimpregnated activated carbons, they increased by 1.2${\sim}$ 3.2 times for the case of the impregnated activated carbons. The optimum aspect ratio(L/D) was 1.0 and the adsorption amount of hydrogen sulfide enhanced with increasing the gas flow rate. The regeneration temperature was determined as 400$^{\circ}C$ from the TGA experiment. The adsorption capacity of hydrogen sulfide with the impregnated activated carbon decreased gradually as the regeneration continued. The hydrogen sulfide adsorption amount of the regenerated activated carbon up to 4 times was still higher than that of the unimpregnated activated carbon.

Keywords

References

  1. F. Adib, A. Bagreev, and T. J. Bandosz, Interface Sci., 214, 407 (1999) https://doi.org/10.1006/jcis.1999.6200
  2. 오광중, 김영식, 김규광, 김미경, 김재용, 박영구, 서종원, 손병현, 오인교, 정진도, '환경 시리즈 5 - 대기오염개론', pp. 254-259, 동화기술, 서울 (1998)
  3. 대기환경연구회, '대기오염개론', pp. 223-225, 동화기술, 서울 (1995)
  4. R. W. Boubel, D. L. Fox, D. B. Turner, and A. C. Sterm, 'Fundamentals of air pollution', 3rd ed., pp. 223-225, 동화기술, 서울 (2000)
  5. 김종석, 김문찬, 박상찬, 박영구, 박정호, 서정민, 이주상, 정진도, 조익준, 차규석, 최정부, 황갑성, '대기오염방지기술', pp. 391-404, 동화기술, 서울 (2000)
  6. 박성원, '트리에칠렌디아민-첨착활성탄에 의한 메칠아요다이드의 흡 . 탈착 특성 연구', 한국과학기술원 박사학위논문 (1994)
  7. 김준석, J. Korean Oil Chemists Soc., 19, 213 (2002)
  8. K. Gergova and S. Eser, Carbon, 34, 879 (1996) https://doi.org/10.1016/0008-6223(96)00028-0
  9. 고용식, '국산왕겨를 이용한 활성탄 제조 및 흡착특성 연구', 인하대학교 석사학위논문 (1993)
  10. 홍종철, '왕겨로부터 고비표면적의 활성탄 제조 및 흡착특성', 명지대학교 석사학위논문 (1998)
  11. A. A. Malik, P. R. Meddings, A. Patel, and K. M. Thomas, Carbon, 34, 439 (1996) https://doi.org/10.1016/0008-6223(95)00165-4
  12. 신창섭, '저오염 . 무공해 공정기술 ; 사업장등에서의 악취제거기술개발', 1차년도 연차 보고서, 충북대학교, 환경부 (1997)
  13. S. Lowell and J. E. Shields, 'Powder Surface Area and Porosity', 3rd ed. Chapman & Hall (1991)
  14. K. H. Kim and C. S. Shin, Carbon, 2, 109 (2001)
  15. 한국화학연구소, '첨착활성탄소의 제조와 활용에 관한 연구(II)', 과학기술처, 서울 (1998)
  16. C. N. Satterfield, 'Heterogeneous Catalysis in Industrial Practice', 2nd ed., McGraw-Hill, Singapore (1991)
  17. 조기철, '$Na_2CO_3$ 첨착활성탄을 이용한 $H_2S$제거에 관한 연구', 부산대학교 석사학위 논문 (1999)
  18. M. P. Cal, B. W. Strickler, and A. A. Lizzio, Carbon, 38, 1757 (2000) https://doi.org/10.1016/S0008-6223(00)00010-5
  19. 이석기, 차선영, 김한수, 박영성, 대전대학교 환경문제연구소 논문집 제4호, p. 31 (1999)