• Title/Summary/Keyword: Microfluidic concentration gradient device

Search Result 6, Processing Time 0.026 seconds

Neural Stem Cell Differentiation Using Microfluidic Device-Generated Growth Factor Gradient

  • Kim, Ji Hyeon;Sim, Jiyeon;Kim, Hyun-Jung
    • Biomolecules & Therapeutics
    • /
    • v.26 no.4
    • /
    • pp.380-388
    • /
    • 2018
  • Neural stem cells (NSCs) have the ability to self-renew and differentiate into multiple nervous system cell types. During embryonic development, the concentrations of soluble biological molecules have a critical role in controlling cell proliferation, migration, differentiation and apoptosis. In an effort to find optimal culture conditions for the generation of desired cell types in vitro, we used a microfluidic chip-generated growth factor gradient system. In the current study, NSCs in the microfluidic device remained healthy during the entire period of cell culture, and proliferated and differentiated in response to the concentration gradient of growth factors (epithermal growth factor and basic fibroblast growth factor). We also showed that overexpression of ASCL1 in NSCs increased neuronal differentiation depending on the concentration gradient of growth factors generated in the microfluidic gradient chip. The microfluidic system allowed us to study concentration-dependent effects of growth factors within a single device, while a traditional system requires multiple independent cultures using fixed growth factor concentrations. Our study suggests that the microfluidic gradient-generating chip is a powerful tool for determining the optimal culture conditions.

Microfluidic immunoassay using superparamagnetic nanoparticles in an enhanced magnetic field gradient (강화된 자기장 구배 하에서 나노자성입자를 이용한 미세유체 기반의 면역 측정)

  • Hahn, Young-Ki;Kang, Joo-H.;Kim, Kyu-Sung;Park, Je-Kyun
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.158-163
    • /
    • 2006
  • This paper reports a novel immunoassay method using superparamagnetic nanoparticles and an enhanced magnetic field gradient for the detection of protein in a microfluidic device. We use superparamagnetic nanoparticles as a label and fluorescent polystyrene beads as a solid support. Based on this platform, magnetic force-based microfluidic immunoassay is successfully applied to analyze the concentration of IgG as model analytes. In addition, we present ferromagnetic microstructure connected with a permanent magnet to increase magnetic flux density gradient (dB/dx, ${\sim}10^{4}$ T/m), which makes limit of detection reduced. The detection limit is reduced to about 1 pg/mL.

Real-time Monitoring of Colloidal Nanoparticles using Light Sheet Dark-field Microscopy Combined with Microfluidic Concentration Gradient Generator (μFCGG-LSDFM)

  • Choe, Hyeokmin;Nho, Hyun Woo;Park, Jonghoon;Kim, Jin Bae;Yoon, Tae Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.365-370
    • /
    • 2014
  • For real-time monitoring of colloidal nanoparticles (NPs) in aqueous media, a light sheet type dark-field microscopy system combined with a microfluidic concentration gradient generator (${\mu}FCGG$-LSDFM) was developed. Various concentrations of colloidal Au NPs were simultaneously generated with the iFCGG and characterized with the LSDFM setup. The number concentrations and hydrodynamic size distributions were measured via particle counting and tracking analysis (PCA and PTA, respectively) approaches. For the 30 nm Au NPs used in this study, the lower detection limit of the LSDFM setup was 3.6 ng/mL, which is about 400 times better than that of optical density measurements under the same ${\mu}FCGG$ system. Additionally, the hydrodynamic diameter distribution of Au NPs was estimated as $39.7{\pm}12.2nm$ with the PTA approach, which agrees well with DLS measurement as well as the manufacturer's specification. We propose this ${\mu}FCGG$-LSDFM setup with features of automatic generation of NP concentration gradient and real-time monitoring of their physicochemical characteristics (e.g., number concentration, and hydrodynamic size distribution) as an important component of future high-throughput screening or high-content analysis platforms of nanotoxicity.

Quantitative Analysis of Single Bacterial Chemotaxis Using a Hydrodynamic Focusing Channel (유체역학적 집속 효과를 이용한 단일 박테리아 주화성의 정량적 분석)

  • Jeon, Ho-Jeong;Lee, Yong-Ku;Jin, Song-Wan;Koo, Sang-Mo;Lee, Chang-Soo;Yoo, Jung-Yul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.3 s.258
    • /
    • pp.209-216
    • /
    • 2007
  • Bacterial chemotaxis is essential to the study of structure and function of bacteria. Although many studies have accumulated the knowledge about chemotaxis in the past, the motion of a single bacterium has not been studied much yet. In this study, we have developed a device microfabricated by soft lithography and consisting of microfluidic channels. The microfluidic assay generates a concentration gradient of chemoattractant linearly in the main channel by only diffusion of the chemicals. Bacteria are injected into the main channel in a single row by hydrodynamic focusing technique. We measured the velocity of bacteria in response to a given concentration gradient of chemoattractant using the microfludic assay, optical systems with CCD camera and simple PTV (Particle Tracking Velocimetry) algorithm. The advantage of this assay and experiment is to measure the velocity of a single bacterium and to quantify the degree of chemotaxis by statistically analyzing the velocity at the same time. Specifically, we measured and analyzed the motility of Escherichia coli strain RP437 in response to various concentration gradients of L-aspartate statistically and quantitatively by using this microfluidic assay. We obtained the probability density of the velocity while RP437 cells are swimming and tumbling in the presence of the linear concentration gradient of L-aspartate, and quantified the degree of chemotaxis by analyzing the probability density.

Elucidating molecular mechanisms of acquired resistance to BRAF inhibitors in melanoma using a microfluidic device and deep sequencing

  • Han, Jiyeon;Jung, Yeonjoo;Jun, Yukyung;Park, Sungsu;Lee, Sanghyuk
    • Genomics & Informatics
    • /
    • v.19 no.1
    • /
    • pp.2.1-2.10
    • /
    • 2021
  • BRAF inhibitors (e.g., vemurafenib) are widely used to treat metastatic melanoma with the BRAF V600E mutation. The initial response is often dramatic, but treatment resistance leads to disease progression in the majority of cases. Although secondary mutations in the mitogen-activated protein kinase signaling pathway are known to be responsible for this phenomenon, the molecular mechanisms governing acquired resistance are not known in more than half of patients. Here we report a genome- and transcriptome-wide study investigating the molecular mechanisms of acquired resistance to BRAF inhibitors. A microfluidic chip with a concentration gradient of vemurafenib was utilized to rapidly obtain therapy-resistant clones from two melanoma cell lines with the BRAF V600E mutation (A375 and SK-MEL-28). Exome and transcriptome data were produced from 13 resistant clones and analyzed to identify secondary mutations and gene expression changes. Various mechanisms, including phenotype switching and metabolic reprogramming, have been determined to contribute to resistance development differently for each clone. The roles of microphthalmia-associated transcription factor, the master transcription factor in melanocyte differentiation/dedifferentiation, were highlighted in terms of phenotype switching. Our study provides an omics-based comprehensive overview of the molecular mechanisms governing acquired resistance to BRAF inhibitor therapy.

CaCO3 Biomineralization in Microfluidic Crystallizer (미세유체 결정화기를 이용한 탄산칼슘 Biomineralization)

  • Seo, Seung Woo;Ko, Kwan Young;Lee, Chang Soo;Kim, In Ho
    • Korean Chemical Engineering Research
    • /
    • v.51 no.1
    • /
    • pp.151-156
    • /
    • 2013
  • Crystallization of $CaCO_3$ is practiced on a polymethylsiloxane (PDMS) - based microfluidic system. Liquid- liquid reaction was investigated by mixing calcium chloride ($CaCl_2$) and sodium carbonate ($Na_2CO_3$) solution to crystallize $CaCO_3$. Aspartic acid (Asp) was added to investigate the morphology change such as vaterite and calcite. Suitable ratio of $Na_2CO_3$ and $CaCl_2$ was searched for initial seed formation. Christmas tree model was used as microfluidic device to form concentration gradient of $Na_2CO_3$ and $CaCl_2$. After observing microfluidic channel by using optical microscope, we found that seeds of $CaCO_3$ were formed under the condition that the ratio of $Na_2CO_3$ and $CaCl_2$ was 2:1. Morphology of crystals were also observed as $CaCO_3$ crystals grow. When Asp was added, vaterite crystal was more frequently found in two morphologies (vaterite and calcite) and seed formation and crystal growth were inhibited.