• Title/Summary/Keyword: Microenvironment

Search Result 350, Processing Time 0.029 seconds

Nrf2 in TIME: The Emerging Role of Nuclear Factor Erythroid 2-Related Factor 2 in the Tumor Immune Microenvironment

  • Jialin Feng;Oliver J. Read;Albena T. Dinkova-Kostova
    • Molecules and Cells
    • /
    • v.46 no.3
    • /
    • pp.142-152
    • /
    • 2023
  • Nuclear factor erythroid 2-related factor 2 (Nrf2) mediates the cellular antioxidant response, allowing adaptation and survival under conditions of oxidative, electrophilic and inflammatory stress, and has a role in metabolism, inflammation and immunity. Activation of Nrf2 provides broad and long-lasting cytoprotection, and is often hijacked by cancer cells, allowing their survival under unfavorable conditions. Moreover, Nrf2 activation in established human tumors is associated with resistance to chemo-, radio-, and immunotherapies. In addition to cancer cells, Nrf2 activation can also occur in tumor-associated macrophages (TAMs) and facilitate an anti-inflammatory, immunosuppressive tumor immune microenvironment (TIME). Several cancer cell-derived metabolites, such as itaconate, L-kynurenine, lactic acid and hyaluronic acid, play an important role in modulating the TIME and tumor-TAMs crosstalk, and have been shown to activate Nrf2. The effects of Nrf2 in TIME are context-depended, and involve multiple mechanisms, including suppression of proinflammatory cytokines, increased expression of programmed cell death ligand 1 (PD-L1), macrophage colony-stimulating factor (M-CSF) and kynureninase, accelerated catabolism of cytotoxic labile heme, and facilitating the metabolic adaptation of TAMs. This understanding presents both challenges and opportunities for strategic targeting of Nrf2 in cancer.

C-Reactive Protein Signaling Pathways in Tumor Progression

  • Eun-Sook Kim;Sun Young Kim;Aree Moon
    • Biomolecules & Therapeutics
    • /
    • v.31 no.5
    • /
    • pp.473-483
    • /
    • 2023
  • Many cancers arise from sites of chronic inflammation, which creates an inflammatory microenvironment surrounding the tumor. Inflammatory substances secreted by cells in the inflammatory environment can induce the proliferation and survival of cancer cells, thereby promoting cancer metastasis and angiogenesis. Therefore, it is important to identify the role of inflammatory factors in cancer progression. This review summarizes the signaling pathways and roles of C-reactive protein (CRP) in various cancer types, including breast, liver, renal, and pancreatic cancer, and the tumor microenvironment. Mounting evidence suggests the role of CRP in breast cancer, particularly in triple-negative breast cancer (TNBC), which is typically associated with a worse prognosis. Increased CRP in the inflammatory environment contributes to enhanced invasiveness and tumor formation in TNBC cells. CRP promotes endothelial cell formation and angiogenesis and contributes to the initiation and progression of atherosclerosis. In pancreatic and kidney cancers, CRP contributes to tumor progression. In liver cancer, CRP regulates inflammatory responses and lipid metabolism. CRP modulates the activity of various signaling molecules in macrophages and monocytes present in the tumor microenvironment, contributing to tumor development, the immune response, and inflammation. In the present review, we overviewed the role of CRP signaling pathways and the association between inflammation and cancer in various types of cancer. Identifying the interactions between CRP signaling pathways and other inflammatory mediators in cancer progression is crucial for understanding the complex relationship between inflammation and cancer.

A new aspect of an old friend: the beneficial effect of metformin on anti-tumor immunity

  • Kim, KyeongJin;Yang, Wen-Hao;Jung, Youn-Sang;Cha, Jong-ho
    • BMB Reports
    • /
    • v.53 no.10
    • /
    • pp.512-520
    • /
    • 2020
  • T-cell-based cancer immunotherapies, such as immune checkpoint blockers (ICBs) and chimeric antigen receptor (CAR)-T-cells, have significant anti-tumor effects against certain types of cancer, providing a new paradigm for cancer treatment. However, the activity of tumor infiltrating T-cells (TILs) can be effectively neutralized in the tumor microenvironment (TME) of most solid tumors, rich in various immunosuppressive factors and cells. Therefore, to improve the clinical outcomes of established T-cell-based immunotherapy, adjuvants that can comprehensively relieve multiple immunosuppressive mechanisms of TME are needed. In this regard, recent studies have revealed that metformin has several beneficial effects on anti-tumor immunity. In this mini-review, we understand the immunosuppressive properties of TME and how metformin comprehensively enhances anti-tumor immunity. Finally, we will discuss this old friend's potential as an adjuvant for cancer immunotherapy.

Cancer Metabolism: Fueling More than Just Growth

  • Lee, Namgyu;Kim, Dohoon
    • Molecules and Cells
    • /
    • v.39 no.12
    • /
    • pp.847-854
    • /
    • 2016
  • The early landmark discoveries in cancer metabolism research have uncovered metabolic processes that support rapid proliferation, such as aerobic glycolysis (Warburg effect), glutaminolysis, and increased nucleotide biosynthesis. However, there are limitations to the effectiveness of specifically targeting the metabolic processes which support rapid proliferation. First, as other normal proliferative tissues also share similar metabolic features, they may also be affected by such treatments. Secondly, targeting proliferative metabolism may only target the highly proliferating "bulk tumor" cells and not the slowergrowing, clinically relevant cancer stem cell subpopulations which may be required for an effective cure. An emerging body of research indicates that altered metabolism plays key roles in supporting proliferation-independent functions of cancer such as cell survival within the ischemic and acidic tumor microenvironment, immune system evasion, and maintenance of the cancer stem cell state. As these aspects of cancer cell metabolism are critical for tumor maintenance yet are less likely to be relevant in normal cells, they represent attractive targets for cancer therapy.

Impact of tumour associated macrophages in pancreatic cancer

  • Mielgo, Ainhoa;Schmid, Michael C.
    • BMB Reports
    • /
    • v.46 no.3
    • /
    • pp.131-138
    • /
    • 2013
  • During cancer progression, bone marrow derived myeloid cells, including immature myeloid cells and macrophages, progressively accumulate at the primary tumour site where they contribute to the establishment of a tumour promoting microenvironment. A marked infiltration of macrophages into the stromal compartment and the generation of a desmoplastic stromal reaction is a particular characteristic of pancreatic ductal adenocarcinoma (PDA) and is thought to play a key role in disease progression and its response to therapy. Tumour associated macrophages (TAMs) foster PDA tumour progression by promoting angiogenesis, metastasis, and by suppressing an anti-tumourigenic immune response. Recent work also suggests that TAMs contribute to resistance to chemotherapy and to the emergence of cancer stem-like cells. Here we will review the current understanding of the biology and the pro-tumourigenic functions of TAMs in cancer and specifically in PDA, and highlight potential therapeutic strategies to target TAMs and to improve current therapies for pancreatic cancer.

Metabolic influence on macrophage polarization and pathogenesis

  • Thapa, Bikash;Lee, Keunwook
    • BMB Reports
    • /
    • v.52 no.6
    • /
    • pp.360-372
    • /
    • 2019
  • Macrophages play an essential role not only in mediating the first line of defense but also in maintaining tissue homeostasis. In response to extrinsic factors derived from a given tissue, macrophages activate different functional programs to produce polarized macrophage populations responsible for inducing inflammation against microbes, removing cellular debris, and tissue repair. However, accumulating evidence has revealed that macrophage polarization is pivotal in the pathophysiology of metabolic syndromes and cancer, as well as in infectious and autoimmune diseases. Recent advances in transcriptomic and metabolomic studies have highlighted the link between metabolic rewiring of macrophages and their functional plasticity. These findings imply that metabolic adaption to their surrounding microenvironment instructs activation of macrophages with functionally distinct phenotypes, which in turn probably leads to the pathogenesis of a wide spectrum of diseases. In this review, we have introduced emerging concepts in immunometabolism with focus on the impact on functional activation of macrophages. Furthermore, we have discussed the implication of macrophage plasticity on the pathogenesis of metabolic syndromes and cancer, and how the disease microenvironment manipulates macrophage metabolism with regard to the pathophysiology.

Current status and clinical application of patient-derived tumor organoid model in kidney and prostate cancers

  • Eunjeong Seo;Minyong Kang
    • BMB Reports
    • /
    • v.56 no.1
    • /
    • pp.24-31
    • /
    • 2023
  • Urological cancers such as kidney, bladder, prostate, and testicular cancers are the most common types of cancers worldwide with high mortality and morbidity. To date, traditional cell lines and animal models have been broadly used to study pre-clinical applications and underlying molecular mechanisms of urological cancers. However, they cannot reflect biological phenotypes of real tissues and clinical diversities of urological cancers in vitro system. In vitro models cannot be utilized to reflect the tumor microenvironment or heterogeneity. Cancer organoids in three-dimensional culture have emerged as a promising platform for simulating tumor microenvironment and revealing heterogeneity. In this review, we summarize recent advances in prostate and kidney cancer organoids regarding culture conditions, advantages, and applications of these cancer organoids.

Lymphopenia predicts reduced survival in canine hepatocellular carcinoma

  • Jose Israel Suarez-Rodriguez;Chin-Chi Liu;Shannon Dehghanpir;Andrea N. Johnston
    • Journal of Veterinary Science
    • /
    • v.24 no.3
    • /
    • pp.36.1-36.7
    • /
    • 2023
  • Platelet to lymphocyte ratio (PLR) is a prognostic marker in human hepatocellular carcinoma (HCC) however, its utility in canine HCC has not been explored. The aim of the study was to determine if PLR could predict survival outcomes in 42 dogs with HCC. PLR was not a significant predictive factor (p = 0.15) but lymphopenia alone was significantly correlated with a reduced probability of survival (p = 0.024). Further studies are needed to evaluate if peripheral lymphocyte count mirrors that of the tumor microenvironment in canine HCC.

A Comprehensive Overview of RNA Deconvolution Methods and Their Application

  • Yebin Im;Yongsoo Kim
    • Molecules and Cells
    • /
    • v.46 no.2
    • /
    • pp.99-105
    • /
    • 2023
  • Tumors are surrounded by a variety of tumor microenvironmental cells. Profiling individual cells within the tumor tissues is crucial to characterize the tumor microenvironment and its therapeutic implications. Since single-cell technologies are still not cost-effective, scientists have developed many statistical deconvolution methods to delineate cellular characteristics from bulk transcriptome data. Here, we present an overview of 20 deconvolution techniques, including cutting-edge techniques recently established. We categorized deconvolution techniques by three primary criteria: characteristics of methodology, use of prior knowledge of cell types and outcome of the methods. We highlighted the advantage of the recent deconvolution tools that are based on probabilistic models. Moreover, we illustrated two scenarios of the common application of deconvolution methods to study tumor microenvironments. This comprehensive review will serve as a guideline for the researchers to select the appropriate method for their application of deconvolution.