• Title/Summary/Keyword: Microelectronics Cooling

Search Result 32, Processing Time 0.021 seconds

TSV Liquid Cooling System for 3D Integrated Circuits (3D IC 열관리를 위한 TSV Liquid Cooling System)

  • Park, Manseok;Kim, Sungdong;Kim, Sarah Eunkyung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.3
    • /
    • pp.1-6
    • /
    • 2013
  • 3D integrated circuit(IC) technology with TSV(through Si via) liquid cooling system is discussed. As a device scales down, both interconnect and packaging technologies are not fast enough to follow transistor's technology. 3D IC technology is considered as one of key technologies to resolve a device scaling issue between transistor and packaging. However, despite of many advantages, 3D IC technology suffers from power delivery, thermal management, manufacturing yield, and device test. Especially for high density and high performance devices, power density increases significantly and it results in a major thermal problem in stacked ICs. In this paper, the recent studies of TSV liquid cooling system has been reviewed as one of device cooling methods for the next generation thermal management.

IC Thermal Management Using Microchannel Liquid Cooling Structure with Various Metal Bumps (금속 범프와 마이크로 채널 액체 냉각 구조를 이용한 소자의 열 관리 연구)

  • Won, Yonghyun;Kim, Sungdong;Kim, Sarah Eunkyung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.2
    • /
    • pp.73-78
    • /
    • 2016
  • An increase in the transistor density of integrated circuit devices leads to a very high increase in heat dissipation density, which causes a long-term reliability and various thermal problems in microelectronics. In this study, liquid cooling method was investigated using straight microchannels with various metal bumps. Microchannels were fabricated on Si wafer using deep reactive ion etching (DRIE), and Ag, Cu, or Cr/Au/Cu metal bumps were placed on Si wafer by a screen printing method. The surface temperature of liquid cooling structures with various metal bumps was measured by infrared (IR) microscopy. For liquid cooling with Cr/Au/Cu bumps, the surface temperature difference before and after liquid cooling was $45.2^{\circ}C$ and the power density drop was $2.8W/cm^2$ at $200^{\circ}C$ heating temperature.

Lead-Free Solders and Processing Issues Relevant to Microelectronics Packaging

  • Kang, Sung K.
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2003.09a
    • /
    • pp.147-163
    • /
    • 2003
  • European Union bans the usage of Pb in electronics from July 1 st, 2006. The Near-eutectic Sn-Ag-Cu alloys are the leading candidate Pb-free solders (for SMT card assembly). .The microstructure of Sn-Ag-Cu alloys is discussed in terms of solidification, composition and cooling rate. Methods of controlling Ag3Sn plates are discussed. .Thermo-mechanical fatigue behaviors of Sn-Ag-Cu solder joints are reviewed. Tin pest, whisker growth, electromigration of Pb-free solders are discussed.

  • PDF

Fabrication of Micro-Heatsink using Nanotemplate (나노 템플레이트를 이용한 마이크로 히트 싱크)

  • 함은주;손원일;홍재민
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.1
    • /
    • pp.7-11
    • /
    • 2003
  • The semiconductor chips or electronic components generate heat, which causes malfunction of the parts when it was not cooled properly. Bulky heat sink and cooling fan are used to get rid of the heat. However, with this bulky system, it is hard to integrate the electronics system in a small scale. The cooling efficiency of the system depends on the surface area of the heat sink, thermal conductivity of the material and the method of integration. In order to develop a novel cooling system, a micro-heatsink with a large surface area while retaining small volume was fabricated by electroless deposition of gold/copper inside a Track-etched membrane. The structure of the micro-heatsink was investigated using SEM or optical microscope. It was also found that the micro-heatsink is more efficient than a flat copper plate.

  • PDF

A Study on Enhanced of Anti-scratch performance of Nanostructured Polymer Surface (고분자 나노 표면의 내스크래치 특성 향상 연구)

  • Yeo, N.E.;Cho, W.K.;Kim, D.I.;Jeong, M.Y.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.3
    • /
    • pp.41-46
    • /
    • 2017
  • In this study, rapid cooling method was proposed to improve the anti-scratch performance of anti-reflection film fabricated by nanoimprint lithography. Effects of cooling time on the mechanical properties and optical properties were evaluated. Pencil hardness measurements showed that anti-scratch performance enhanced as the cooling time increased while characterization on the optical property showed that reflectance on scratch increased as the cooling time increased. Therefore, it was concluded that the anti-scratch performance and optical properties are highly influenced by the cooling time. The observed results explained in terms of residual stress and free volume in polymeric materials.

A Study on the microcooling Fin Fabrication Process for Enhancing Boiling Heat Transfer (비등열전달 향상을 위한 초소형 핀 제작공정에 관한 연구)

  • You, Sam-Sang;Lim, Tae-Woo;Jeong, Seok-Kwon;Park, Jong-Un
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.19 no.3
    • /
    • pp.366-372
    • /
    • 2007
  • This paper presents the fabrication techniques of microcooling fins for microelectronics applications. The various types of cooling fins have been fabricated on the surface of a silicon wafer (4inch-N type) by using wet etching technique. The designed micro fins and micro channels are considered as an effective method for cooling microelectronics devices generating high heat flux. Further we extensively investigate the design processes fabricating micro fins and channels which can cool the heat generated from high density electronics devices.

Development of Thermosyphon for Cooling of High Power Electronic Component in Telecommunication System (통신시스템의 고발열 부품 냉각용 써모사이폰 개발)

  • 한재섭
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.5 no.2
    • /
    • pp.27-36
    • /
    • 1998
  • 통신시스템의 고발열 전자부품 냉각을 위해 3종류의 써모싸이폰을 각각의 용도에 따라 개 발하였으며 그 각각의 설계변수에 대한 냉각특성을 실험적으로 구하였다. TS-I에서는 증발부 내부 에 금속스크린 메쉬형심지를 삽입함으로써 시간에 따른 온도 변화를 작게 하여 냉각성능 안정성을 확보하였고, TS-II에서는 9W/cm2의 높은 냉각성능을 가진 루프형 써모사이폰을 개발하였으며 TS-III에서는 작동유체의 종류, 파이프개수 와이어 삽입여부등 써모사이폰의 주요 설계변수에 따 른 냉각특성을 구하였다.

Study of On-chip Liquid Cooling in Relation to Micro-channel Design (마이크로 채널 디자인에 따른 온 칩 액체 냉각 연구)

  • Won, Yonghyun;Kim, Sungdong;Kim, Sarah Eunkyung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.4
    • /
    • pp.31-36
    • /
    • 2015
  • The demand for multi-functionality, high density, high performance, and miniaturization of IC devices has caused the technology paradigm shift for electronic packaging. So, thermal management of new packaged chips becomes a bottleneck for the performance of next generation devices. Among various thermal solutions such as heat sink, heat spreader, TIM, thermoelectric cooler, etc. on-chip liquid cooling module was investigated in this study. Micro-channel was fabricated on Si wafer using a deep reactive ion etching, and 3 different micro-channel designs (straight MC, serpentine MC, zigzag MC) were formed to evalute the effectiveness of liquid cooling. At the heating temperature of $200^{\circ}C$ and coolant flow rate of 150ml/min, straight MC showed the high temperature differential of ${\sim}44^{\circ}C$ after liquid cooling. The shape of liquid flowing through micro-channel was observed by fluorescence microscope, and the temperarue differential of liquid cooling module was measuremd by IR microscope.