• Title/Summary/Keyword: Microcrystalline Si

Search Result 80, Processing Time 0.026 seconds

Low Temperature Deposition of $\mu$ c-Si:H Films by Hot Wire CVD (Hot Wire CVD법에 의한 미세결정 실리콘 박막의 저온 증착)

  • Lee, Jeong-Chul;Kan, Ki-Whan;Kim, Seok-Ki;Yoon, Kyung-Hoon;Song, Jin-Soo;Park, I-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1763-1765
    • /
    • 2000
  • This paper presents deposition and characterizations of microcrystalline silicon ($\mu$ c-Si:H) films prepared by hot wire chemical vapor deposition at substrate temperature at 300$^{\circ}C$. The flow rates of $SiH_4$ gas are critical parameter for the formation of Si films with microcrystalline phase. We could obtain $\mu$ c-Si:H with columnar grain structure and volume fraction of 75% without H2 dilution. The electronic properties, hydrogen bonding configurations, and $H_2$ concentration inside the films are also strongly affected by $SiH_4$ flow rate, which is provided in this paper.

  • PDF

Layer-by-layer nitrogenation of microcrystalline silicon for TFT applications

  • Bu, I.;Milne, W.I.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.405-407
    • /
    • 2004
  • We have optimized the low temperature growth of microcrystalline silicon at 80$^{\circ}C$. This material has been used to fabricate bottom gate ${\mu}c$-Si:H TFTs by using a layer-by-layer nitrogenation process. By using this process the amorphous incubation layer can be converted into silicon nitride and leads to an increase in field effect mobility of the TFT

  • PDF

A Study on Characteristics of Microcrystalline-silicon Films Fabricated by PECVD Method (플라즈마 화학증착법으로 제작한 미세결정질 실리콘 박막 특성에 관한 연구)

  • Lee, Ho-Nyeon;Lee, Jong-Ha;Lee, Byoung-Wook;Kim, Chang-Kyo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.9
    • /
    • pp.848-852
    • /
    • 2008
  • Characteristics of microcrystalline-silicon thin-films deposited by plasma-enhanced chemical-vapor deposition (PECVD) method were studied. There were optimum values of RF power density and $H_2$ dilution ratio $(H_2/(SiH_4+H_2))$; maximum grain size of about 35 nm was obtained at substrate temperature of 250 $^{\circ}C$ with RF power density of 1.1 W/$cm^2$ and $H_2$ dilution ratio of 0.91. Larger grain was obtained with higher substrate temperature up to 350 $^{\circ}C$. Grain size dependence on RF power density and $H_2$ dilution ratio could be explained by etching effects of hydrogen ions and changes of species of reactive precursors on growing surface. Surface-mobility activation of reactive precursors by temperature could be a reason of grain-size dependence on the substrate temperature. Microcrystalline-silicon thin-films that could be used for flat-panel electronics such as active-matrix organic-light-emitting-diodes are expected to be fabricated successfully using these results.

Characterization of microcrystalline silicon thin films prepared by layer-by-layer technique with a OECVD system

  • Kim, C.O.;Nahm, T.U.;Hong, J.P.
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.3 no.2
    • /
    • pp.116-120
    • /
    • 1999
  • Possible role of hydrogen atoms on the formation of microcrystalline silicon films was schematically investigated using a plasma enhanced chemical vapor deposition system. A layer-by-layer technique that can alternate deposition of ${\alpha}$-Si thin film and then exposure of H2 plasma was used for this end. The experimental process was extensively carried out under different hydrogen plasma times (t2) at a fixed number of 20 cycles in the deposition. structural properties, such as crystalline volume fractions and grain shapes were analyzed by using a Raman spectroscopy and a scanning electron microscopy. Electrical transports were characterized by the temperature dependence of the dark conductivity that gives rise to the calculation of activation energy (Ea). Optical absorption was measured using an ultra violet spectrophotometer, resulting in the optical energy gap (Eopt). Our experimental results indicate that both of the hydrogen etching and the structural relaxation effects on the film surface seem to be responsible for the growth mechanism of the crystallites in the ${\mu}$c-si films.

  • PDF

Microcrystalline Silicon Film Growth on a Fluoride Film Coated Glass Substrate

  • Kim, Do-Young;Park, Joong-Hyun;Ahn, Byung-Jae;Yoo, Jin-Su;Yi, Jun-Sin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.526-529
    • /
    • 2002
  • Various fluoride films on a glass substrate were prepared and characterized in order to determine the best seed layer for a microcrystalline silicon (${\mu}c$-Si) film growth. Among the various group-IIA-fluoride systems, the $CaF_2$films on glass substrates illustrated (220) preferential orientation and a lattice mismatch of less than 0.7% with Si. $CaF_2$ films exhibited a dielectric constant between $4.1{\sim}5.2$ and an interface trap density ($D_{it}$ as low as $1.8{\times}10^{11}\;cm^{-2}eV^1$. Using the $CaF_2$/glass structure, we were able to achieve an improved ${\mu}c$-Si film at a process temperature of 300 $^{\circ}C$. We have achieved the ${\mu}c$-Si films with a crystalline volume fraction of 65%, a grain size of 700 ${\AA}$, and an activation energy of 0.49 eV.

  • PDF

The Study of Sputtered SiGe Thin Film Growth for Photo-detector Application (광검출기 응용을 위하여 스퍼터된 미세결정 SiGe 박막성장 연구)

  • Kim, Do-Young;Kim, Sun-Jo;Kim, Hyung-Jun;Han, Sang-Youn;Song, Jun-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.6
    • /
    • pp.439-444
    • /
    • 2012
  • For the application of photo-detector as active layer, we have studied how to deposit SiGe thin film using an independent Si target and Ge target, respectively. Both targets were synthesized by purity of 99.999%. Plasma generators were generated by radio frequency (rf, 13.56 MHz) and direct current (dc) power. When Ge and Si targets were sputtered by dc and rf power, respectively, we could observe the growth of highly crystalline Ge thin film at the temperature of $400^{\circ}C$ from the result of raman spectroscopy and X-ray diffraction method. However, SiGe thin film did not deposit above method. Inversely, we changed target position like that Ge and Si targets were sputtered by rf and dc power, respectively. Although Ge crystalline growth without Si target sputtering deteriorated considerably, the growth of SiGe thin film was observed with increase of Si dc power. SiGe thin film was evaluated as microcrystalline phase which included (111) and (220) plane by X-ray diffraction method.

MICROCRYSTALLINE Fe-Si-Al-B THIN RIBBON

  • Sun, Guiqin;Yu, Xiaojun;Zhang, Jikai;Narita, Kenji
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.504-506
    • /
    • 1995
  • By means of adding B into Sendust alloy (Fe-Si-Al) with state of amorphous ribbon, mechnical properties of alloy was improved effectively, and magnetic properties didn't decrease obviously. The optimum adding quantity of B is 0.015-0.03 wt%. The adding of B was thought to give rise to reduction of ordering degree of $Fe_{3}(Si,Al)$ phase of Sedust alloy(Fe-Si-Al-B) and result in improvment of embrittlement of this alloy.

  • PDF

The Growth of Diamond-Like-Carbon (DLC) Film by PECVD and the Characterization (PECVD에 의한 DLC 박막의 성장과 그 특성 조사)

  • 조재원;김태환;김대욱;최성수
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.3
    • /
    • pp.248-254
    • /
    • 1998
  • DLC(Diamond-Like-Carbon) thin film, one of the solid state amorphous carbon films, has been deposited by the method of PECVD (Plasma Enhanced Chemical Vapor Deposition). The structural features have been characterized using both FT-IR Spectroscopy and Raman Scattering. The film is considered to consist of microcrystalline diamond domains and graphitelike carbon domains, which are interconnected by hydrogenated $sp^3$ tetrahedral carbons. This shows a good agreement with the results by I-Vmeasurements. In I-Vstudy, the sudden increase of current has been observed and this phenomenon is understood to be due to the tunneling effect between graphitelike domains. A characteristic feature related to the $\beta$-SiC has been identified in the study of Raman Scattering for the very thin film, which suggests that a buffer layer forms at the interface of the Si substrate and the carbon film.

  • PDF