• Title/Summary/Keyword: Microchannel Catalyst

Search Result 11, Processing Time 0.024 seconds

Study on hydrocarbon reforming using microchannel catalysts (마이크로 채널을 이용한 탄화수소 연료개질에 관한 연구)

  • Bae, Gyu-Jong;Park, Joon-Geun;Bae, Joong-Myeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.33-36
    • /
    • 2007
  • Currently, many structured catalysts using microchannel are researched to apply to fuel reforming. In this paper, ceramic monolith and metal mesh as structured catalysts are investigated for catalytic autothermal reforming. When GHSV increases, each structured catalyst has better performances(hydrogen production, fuel conversion) than packed bed catalyst for autothermal reforming. The major causes seem to be the elevated heat and mass transfer, gas phase reaction and redistribution of packed bed due to high pressure drop.

  • PDF

kW-class Diesel Autothermal Reformer with Microchannel Catalyst for Solid Oxide Fuel Cell System (고체산화물 연료전지 시스템을 위한 kW급 마이크로채널 촉매 디젤 자열 개질기)

  • Yoon, Sang-Ho;Kang, In-Yong;Bae, Gyu-Jong;Bae, Joong-Myeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.7
    • /
    • pp.558-565
    • /
    • 2008
  • Solid oxide fuel cell(SOFC) has a higher fuel flexibility than low temperature fuel cells, such as polymer electrolyte fuel cell(PEMFC) and phosphoric acid fuel cell(PAFC). SOFCs also use CO and $CH_4$ as a fuel, because SOFCs are hot enough to allow the CH4 steam reformation(SR) reaction and water-gas shift(WGS) reaction occur within the SOFC stack itself. Diesel is a good candidate for SOFC system fuel because diesel reformate gas include a higher degree of CO and $CH_4$ concentration than other hydrocarbon(methane, butane, etc.) reformate gas. Selection of catalyst for autothermalr reforming of diesel was performed in this paper, and characteristics of reforming performance between packed-bed and microchannel catalyst are compared for SOFC system. The mesh-typed microchannel catalyst also investigated for diesel ATR operation for 1kW-class SOFC system. 1kW-class diesel microchannel ATR was continuously operated about 30 hours and its reforming efficiency was achieved nearly 55%.

Development of Simplified One-dimensional Model for Microchannel Steam/Methane Reformers based on Catalyst Effectiveness Factor Correlations (촉매유효도 상관식에 기반한 마이크로 채널형 수증기/메탄 개질기의 간략화된 1차원 해석모델의 개발)

  • Yun Seok Oh;Dae-Hoon Lee;Jin Hyun Nam
    • New & Renewable Energy
    • /
    • v.19 no.2
    • /
    • pp.1-12
    • /
    • 2023
  • In this study, an efficient one-dimensional model was developed for predicting microchannel steam/methane reformers with thin washcoat catalyst layers with a focus on low-pressure reforming conditions suitable for distributed hydrogen production systems for fuel cell applications. The governing equations for steam/methane mixture gas flowing through the microchannel reformer were derived considering the species conservation with reforming reactions and energy conservation with external convective heat supply. The reaction rates for the developed model were simply determined through the catalyst effectiveness factor correlations instead of performing complicated calculations for the steam/methane reforming process occurring inside the washcoat catalyst layers. The accuracy of the developed was verified by comparing the results obtained herein with those obtained by the detailed computational fluid dynamics calculation for the same microchannel reformer.

Efficient Computational Fluid Dynamics Model for Microchannel-Type Steam/Methane Reformers with Nickel Washcoat Catalyst Layers Based on Effectiveness Factor Correlations (촉매유효도 상관식에 기반한 마이크로 채널형 수증기/메탄 개질기의 효율적인 전산유체역학 해석모델)

  • YUN SEOK OH;AREUM JEONG;JIN HYUN NAM
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.6
    • /
    • pp.749-760
    • /
    • 2022
  • An efficient computational fluid dynamics model was proposed for simulating microchannel-type steam/methane reformers with thin washcoat catalyst layers. In this model, by using the effectiveness factor correlations, the overall reaction rate that occurs in the washcoat catalyst layer could be accurately estimated without performing the detailed calculation of heat transfer, mass transfer, and reforming reactions therein. The accuracy of the proposed model was validated by solving a microchannel-type reformer, once by fully considering the complex steam/methane reforming (SMR) process inside the washcoat layer and again by simplifying the SMR calculation using the effectiveness factor correlations. Finally, parametric studies were conducted to investigate the effects of operating conditions on the SMR performance.

Microchannel Development for Fuel Processor of Automotive Applications (자동차탑재용 연료개질시스템을 위한 마이크로채널개발)

  • Bae Jung Myeon
    • 한국전기화학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.89-95
    • /
    • 2003
  • Fuel processing is an enabling technology for faster commercialization under lack of hydrogen infrastructures. It has been reported that the development of novel catalysts that are active and selective for hydrocarbon reforming reactions. It has been realized, however, that with pellet or conventional honeycomb catalysts, the reforming process is mass transport limited. This paper reports the development of catalyst structures with microchannels that are able to reduce the diffusion resistance and thereby achieve the same production rate within a smaller reactor bed. These microchannel reforming catalysts were prepared and tested with natural gas and gasoline-type fuels in a microreactor (1-cm dia.) at space velocities of up to 250,000 per hour. These catalysts have also been used in engineering-scale reactors (10 kWe, 7-cm dia.) with similar product qualities. Compared to pellet catalysts. the microchannel catalysts enable a nearly 5-fold reduction in catalyst weight and volume.

  • PDF

Experimental Study of Interfacial Friction in NaBH4 Solution in Microchannel Dehydrogenation Reactor (마이크로채널 탈수소 화학반응기에서 수소화붕소나트륨 수용액의 계면마찰에 대한 실험연구)

  • Choi, Seok Hyun;Hwang, Sueng Sik;Lee, Hee Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.2
    • /
    • pp.139-146
    • /
    • 2014
  • Sodium borohydride ($NaBH_4$) is considered as a secure metal hydride for hydrogen storage and supply. In this study, the interfacial friction of two-phase flow in the dehydrogenation of aqueous $NaBH_4$ solution in a microchannel with a hydraulic diameter of $461{\mu}m$ is investigated for designing a dehydrogenation chemical reactor flow passage. Because hydrogen gas is generated by the hydrolysis of $NaBH_4$ in the presence of a ruthenium catalyst, two different flow phases (aqueous $NaBH_4$ solution and hydrogen gas) exist in the channel. For experimental studies, a microchannel was fabricated on a silicon wafer substrate, and 100-nm ruthenium catalyst was deposited on three sides of the channel surface. A bubbly flow pattern was observed. The experimental results indicate that the two-phase multiplier increases linearly with the void fraction, which depends on the initial concentration, reaction rate, and flow residence time.

Micro Cell Counter Integrated with An Oxygen Micropump (산소 미세 펌프가 내장된 미세 세포 계수기)

  • Son, Sang-Uk;Choi, Yo-Han;Lee, Seung-Seob
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.8 s.227
    • /
    • pp.1159-1165
    • /
    • 2004
  • This paper describes fabrication of a micro cell counter integrated with an oxygen micropump and counting experiment with Sephadex G-25 beads ($70{\sim}100\;{\mu}m$). The pumping part consisted of a microheater, catalyst (manganese dioxide) enveloped with paraffin, hydrogen peroxide, and microchannel, and the counting part consisted of collimated light, a microwindow, and a phototransistor including an external circuit. The micropump generated oxygen gas by decomposing hydrogen peroxide with manganese dioxide, which was initiated by melting the paraffin with the microheater, and pumped beads in the microchannel. When the beads passed the microwindow, they shaded the collimated light and changed the illumination on the phototransistor, which caused the current variation in the circuit. The signals, according to the bead size, reached up to 22 mV with noise level of 2 mV during 50 seconds and the numbers of peaks were analyzed by magnitude.

Numerical Simulation of Water Transport in a Gas Diffusion Layer with Microchannels in PEMFC (마이크로채널이 적용된 고분자 전해질 연료전지 가스확산층의 물 이송에 대한 전산해석 연구)

  • Woo, Ahyoung;Cha, Dowon;Kim, Bosung;Kim, Yongchan
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.1
    • /
    • pp.39-45
    • /
    • 2013
  • The water management is one of the key issues in low operating temperature proton exchange membrane fuel cells (PEMFCs). The gas diffusion layer (GDL) allows the reactant gases flow to the reaction sites of the catalyst layer (CL). At high current density, generated water forms droplets because the normal operating temperature is $60{\sim}80^{\circ}C$. If liquid water is not evacuated properly, the pores in the GDL will be blocked and the performance will be reduced severely. In this study, the microchannel GDL was proposed to solve the flooding problem. The liquid water transport through 3-D constructed conventional GDL and microchannel GDL was analyzed varying air velocity, water velocity, and contact angle. The simulation results showed that the liquid water was evacuated rapidly through the microchannel GDL because of the lower flow resistance. Therefore, the microchannel GDL was efficient to remove liquid water in the GDL and gas channels.

Numerical Study of Heat and Mass Transfer Characteristics in Microchannel Steam Methane Reforming Reactor (마이크로채널 메탄 수증기 개질 반응기의 열 및 물질 전달 특성에 관한 수치해석 연구)

  • Jeon, Seung-Won;Lee, Kyu-Jung;Cho, Yeon-Hwa;Moon, Dong-Ju
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.9
    • /
    • pp.885-894
    • /
    • 2012
  • A numerical study of a microchannel steam methane reforming reactor has been performed to understand the characteristics of heat and mass transfer. The integration of Rh-catalyzed steam methane reforming and Pt-catalyzed methane combustion has been simulated. The reaction rates for chemical reactions have been incorporated into the simulation. This study investigated the effect of contact time, flow pattern (parallel or counter), and channel size on the reforming performance and temperature distribution. The parallel and counter flow have opposite temperature distribution, and they show a different type of reaction rate and species mole fraction. As the contact time decreases and channel size increases, mass transfer between the catalyst layer and the flow is limited, and the reforming performance is decreased.

Intensified Low-Temperature Fischer-Tropsch Synthesis Using Microchannel Reactor Block : A Computational Fluid Dynamics Simulation Study (마이크로채널 반응기를 이용한 강화된 저온 피셔-트롭쉬 합성반응의 전산유체역학적 해석)

  • Kshetrimatum, Krishnadash S.;Na, Jonggeol;Park, Seongho;Jung, Ikhwan;Lee, Yongkyu;Han, Chonghun
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.4
    • /
    • pp.92-102
    • /
    • 2017
  • Fischer-Tropsch synthesis reaction converts syngas (mixture of CO and H2) to valuable hydrocarbon products. Simulation of low temperature Fischer -Tropsch Synthesis reaction and heat transfer at intensified process condition using catalyst filled single and multichannel microchannel reactor is considered. Single channel model simulation indicated potential for process intensification (higher GHSV of $30000hr^{-1}$ in presence of theoretical Cobalt based super-active catalyst) while still achieving CO conversion greater than ~65% and $C_{5+}$ selectivity greater than ~74%. Conjugate heat transfer simulation with multichannel reactor block models considering three different combinations of reactor configuration and coolant type predicted ${\Delta}T_{max}$ equal to 23 K for cross-flow configuration with wall boiling coolant, 15 K for co-current flow configuration with subcooled coolant, and 13 K for co-current flow configuration with wall boiling coolant. In the range of temperature maintained (498 - 521 K), chain growth probability calculated is desirable for low-temperature Fisher-Tropsch Synthesis.