DOI QR코드

DOI QR Code

촉매유효도 상관식에 기반한 마이크로 채널형 수증기/메탄 개질기의 효율적인 전산유체역학 해석모델

Efficient Computational Fluid Dynamics Model for Microchannel-Type Steam/Methane Reformers with Nickel Washcoat Catalyst Layers Based on Effectiveness Factor Correlations

  • 오윤석 (서울대학교 기계공학부) ;
  • 정아름 (서울대학교 기계공학부) ;
  • 남진현 (대구대학교 기계공학부)
  • YUN SEOK, OH (School of Mechanical Engineering, Seoul National University) ;
  • AREUM, JEONG (School of Mechanical Engineering, Seoul National University) ;
  • JIN HYUN, NAM (School of Mechanical Engineering, Daegu University)
  • 투고 : 2022.11.14
  • 심사 : 2022.12.13
  • 발행 : 2022.12.30

초록

An efficient computational fluid dynamics model was proposed for simulating microchannel-type steam/methane reformers with thin washcoat catalyst layers. In this model, by using the effectiveness factor correlations, the overall reaction rate that occurs in the washcoat catalyst layer could be accurately estimated without performing the detailed calculation of heat transfer, mass transfer, and reforming reactions therein. The accuracy of the proposed model was validated by solving a microchannel-type reformer, once by fully considering the complex steam/methane reforming (SMR) process inside the washcoat layer and again by simplifying the SMR calculation using the effectiveness factor correlations. Finally, parametric studies were conducted to investigate the effects of operating conditions on the SMR performance.

키워드

과제정보

본 논문은 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업(Grant No. NRF-2019R1F1A1041995)의 연구 결과이며 이에 감사드립니다.

참고문헌

  1. M. Granovskii, I. Dincer, M. A. Rosen, "Environmental and economic aspects of hydrogen production and utilization in fuel cell vehicles", Journal of Power Sources, Vol. 157, No. 1, 2006, pp. 411-421, doi: https://doi.org/10.1016/j.jpowsour.2005.07.044.
  2. I. Dincer and C. Acar, "Review and evaluation of hydrogen production methods for better sustainability", International Journal of Hydrogen Energy, Vol. 40, No. 34, 2015, pp. 11094-11111, doi: https://doi.org/10.1016/j.ijhydene.2014.12.035.
  3. R. P. O'Hayre, "Fuel cell fundamentals. 1st ed.", John Wiley & Sons, Hoboken, NJ, USA, 2006.
  4. Y. YI, S. J. Park, M. S. Kim, J. S. Shin, and S. J. Shin, "A Study on optimization of reformer for kW class SOFC system", Trans. of the Korean hydrogen and new energy society, Vol. 29, No. 4, 2018, pp. 317-323, doi: https://doi.org/10.7316/KHNES.2018.29.4.317.
  5. T. H. Lee, T. S. Park, T. W. Kim, J. H. Noh, and Y. J. Kang, "Heat exchanger design for the individually allocated fuel cell for 1kw power generation", Trans. of the Korean Hydrogen and New Energy Society, Vol. 25, No. 1, 2014, pp. 39-46, doi: https://doi.org/10.7316/KHNES.2014.25.1.039.
  6. M. Irani, A. Alizadehdakhel, A. N. Pour, N. Hoseini, and M. Adinehnia, "CFD modeling of hydrogen production using steam reforming of methane in monolith reactors: surface or volume-base reaction model?", International Journal of Hydrogen Energy, Vol. 36, No. 24, 2011, pp. 15602-15610, doi: https://doi.org/10.1016/j.ijhydene.2011.09.030.
  7. P. Ferreira-Aparicio, M. J. Benito, and J. L. Sanz, "New trends in reforming technologies: from hydrogen industrial plants to multifuel microreformers", Catalysis Reviews, Vol. 47, No. 4, 2005, pp. 491-588, doi: https://doi.org/10.1080/01614940500364958.
  8. A. Y. Tonkovich, S. Perry, Y. Wang, D. Qiu, T. LaPlante, and W. A. Rogers, "Microchannel process technology for compact methane steam reforming", Chemical Engineering Science, Vol. 59, No. 2223, 2004, pp. 4819-4824, doi: https://doi.org/10.1016/j.ces.2004.07.098.
  9. M. Zanfir and A. Gavriilidis, "Catalytic combustion assisted methane steam reforming in a catalytic plate reactor", Chemical Engineering Science, Vol. 58, No. 17, 2003, pp. 3947-3960, doi: https://doi.org/10.1016/S00092509(03)002793.
  10. I. Schjolberg, C. Hulteberg, I. Yasuda, and C. Nelsson, "Small scale reformers for onsite hydrogen supply", Energy Procedia, Vol. 29, 2012, pp. 559-566, doi: https://doi.org/10.1016/j.egypro.2012.09.065.
  11. X. Zhai, Y. Cheng, Z. Zhang, Y. Jin, and Y. Cheng, "Steam reforming of methane over Ni catalyst in microchannel reactor", International Journal of Hydrogen Energy, Vol. 36, No. 12, 2011, pp. 7105-7113, doi: https://doi.org/10.1016/j.ijhydene.2011.03.065.
  12. C. Cao, N. Zhang, and Y. Cheng, "Numerical analysis on steam methane reforming in a plate microchannel reactor: Effect of washcoat properties", International Journal of Hydrogen Energy, Vol. 41, No. 42, 2016, pp. 18921-18941, doi: https://doi.org/10.1016/j.ijhydene.2016.09.034.
  13. J. Chen, X. Gao, L. Yan, and D. Xu, "Millisecond methane steam reforming for hydrogen production: a computational fluid dynamics study", International Journal of Hydrogen Energy, Vol. 43, No. 29, 2018, pp. 12948-12969, doi: https://doi.org/10.1016/j.ijhydene.2018.05.039.
  14. S. M. Baek, J. H. Kang, K. J. Lee, and J. H. Nam, "A numerical study of the effectiveness factors of nickel catalyst pellets used in steam methane reforming for residential fuel cell applications", International Journal of Hydrogen Energy, Vol. 39, No. 17, 2014, pp. 9180-9192, doi: https://doi.org/10.1016/j.ijhydene.2014.04.067.
  15. J. H. Nam, "Effectiveness factor correlations for spherical nickel catalyst pellets used in small-scale steam methane reformers", International Journal of Hydrogen Energy, Vol. 40, No. 16, 2015, pp. 5644-5652, doi: https://doi.org/10.1016/j.ijhydene.2015.02.119.
  16. A. Jeong, D. Shin, S. M. Baek, and J. H. Nam, "Effectiveness factor correlations from simulations of washcoat nickel catalyst layers for small-scale steam methane reforming applications", International Journal of Hydrogen Energy, Vol. 43, No. 32, 2018, pp. 15398-15411, doi: https://doi.org/10.1016/j.ijhydene.2018.06.059.
  17. ANSYS, "ANSYS fluent theory guide (Release 15.0)", ANSYS Inc. and SAE IP Inc., 2013. Retrieved from http://www.pmt.usp.br/academic/martoran/notasmodelosgrad/ANSYS%20Fluent%20Users%20Guide.pdf.
  18. J. Xu and G. F. Froment, "Methane steam reforming, methanation and watergas shift: I. Intrinsic kinetics", AIChE Journal, Vol. 35, No. 1, 1989, pp. 8896, doi: https://doi.org/10.1002/aic.690350109.
  19. R. B. Bird, E. N. Lightfoot, and W. E. Stewart, "Transport phenomena. 2nd ed.", John Wiley & Sons, USA, 2002.
  20. E. N. Fuller, P. D. Schettler, and J. C. Giddings, "New method for prediction of binary gas-phase diffusion coefficients", Industrial & Engineering Chemistry, Vol. 58, No. 5, 1966, pp. 18-27, doi: https://doi.org/10.1021/ie50677a007.
  21. M. Kaviany, "Principles of heat transfer in porous media. 2nd ed.", Springer, USA, 1999.
  22. E. A. Mason and A. P. Malinauskas, "Gas transport in porous media: the dusty-gas model", Elsevier, Netherlands, 1983.