• Title/Summary/Keyword: Microbial solubilization

Search Result 34, Processing Time 0.028 seconds

Isolation and Characterization of Insoluble Phosphate-Solubilizing Bacteria with Antifungal Activity (항진균능을 가진 불용성 인산 가용화 세균의 분리 및 특성)

  • Park, Ki-Hyun;Son, Hong-Joo
    • Korean Journal of Microbiology
    • /
    • v.42 no.3
    • /
    • pp.223-229
    • /
    • 2006
  • To develop multifunctional microbial inoculant, an insluble phosphate-solubilizing bacterium with antifungal activity was isolated from plant rhizospheric soil. On the basis of its morphological, cultural and physiological characteristics and Biolog analysis, this bacterium was identified as Pseudomonas fluorescens RAF15. P. fluorescens RAF15 showed antifungal activities against phytopathogenic fungi Botrytis cinerea and Rhizoctonia solani. The optimal medium composition and cultural conditions for the solubilization of insoluble phosphate by P. fluorescens RAF15 were 1.5% of glucose, 0.005% of urea, 0.3% $MgCl_2{\cdot}6H_2\;0.01%\;of\;MgSO_4{\cdot}7H_2O\;0.01%,\;of\;CaCl_2{\cdot}2H_2O$, and 0.05% of NaCl along with initial pH 7.0 at $30^{\circ}C$. The soluble phosphate production under optimum condition was 863 mg/L after 5 days of cultivation. The solubilization of insoluble phosphates was associated with a drop in the pH of the culture medium. P. fluorescens RAF15 showed resistance against different environmental stresses like $10-35^{\circ}C$ temperature, 1-4% salt concentration and pH 2-11 range. The strain produced soluble phosphate to the culture broth with the concentrations of 971-1121 mg/L against $CaHPO_4$, 791-908 mg/L against $Ca_3(PO_4){_2}$, and 844 mg/L against hydroxyapatite, respectively. However, the strain produced soluble phosphate to the culture broth with the concentrations of 15 mg/L against $FePO_4$, and 5 mg/L against $AlPO_4$, respectively.

Plant Growth-Promoting Activity Characteristics of Bacillus Strains in the Rhizosphere (근권에 존재하는 Bacillus 속 균주들의 식물 생장 촉진 활성 특성)

  • Oh, Ka-Yoon;Kim, Ji-Youn;Lee, Song Min;Kim, Hee Sook;Lee, Kwang Hui;Lee, Sang-Hyeon;Jang, Jeong Su
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.3
    • /
    • pp.403-412
    • /
    • 2021
  • This study aimed to identify plant growth-promoting activity, phytopathogenic fungi growth inhibitory activity, mineral solubilization ability, and extracellular enzyme activity of the genus Bacillus in soil and the rhizosphere. With regards to antifungal activity against phytopathogenic fungi, DDP257 showed antifungal activity against all 10 pathogenic fungi tested. ANG20 showed the highest ability to produce indole-3-acetic acid, a plant growth-promoting factor (70.97 ㎍/ml). In addition, 10 species were identified to have 1-aminocyclopropane-1-carboxylate deaminase production ability, and most isolates showed nitrogen fixation and siderophore production abilities. Thereafter, the isolated strains' ability to solubilize minerals such as phosphate, calcite, and zinc was identified. With extracellular enzyme activity, the activity appeared in most enzymes. In particular, all the strains showed similar abilities for alkaline phosphatase, esterase (C4), acid phosphatase, and naphtol-AS-BI-phosphohydrolase production. This result was observed because the genus Bacillus secreted various organic substances, antibiotics, and extracellular enzymes. Therefore, through the results of this study, we suggest the possibility of using strains contributing to the improvement of the soil environment as microbial agents.

Antagonistic Activities of Bacillus spp. Strains Isolated from Tidal Flat Sediment Towards Anthracnose Pathogens Colletotrichum acutatum and C. gloeosporioides in South Korea

  • Han, Joon-Hee;Shim, Hongsik;Shin, Jong-Hwan;Kim, Kyoung Su
    • The Plant Pathology Journal
    • /
    • v.31 no.2
    • /
    • pp.165-175
    • /
    • 2015
  • Anthracnose is a fungal disease caused by Colletotrichum species that is detrimental to numerous plant species. Anthracnose control with fungicides has both human health and environmental safety implications. Despite increasing public concerns, fungicide use will continue in the absence of viable alternatives. There have been relatively less efforts to search antagonistic bacteria from mudflats harboring microbial diversity. A total of 420 bacterial strains were isolated from mudflats near the western sea of South Korea. Five bacterial strains, LB01, LB14, HM03, HM17, and LB15, were characterized as having antifungal properties in the presence of C. acutatum and C. gloeosporioides. The three Bacillus atrophaeus strains, LB14, HM03, and HM17, produced large quantities of chitinase and protease enzymes, whereas the B. amyloliquefaciens strain LB01 produced protease and cellulase enzymes. Two important antagonistic traits, siderophore production and solubilization of insoluble phosphate, were observed in the three B. atrophaeus strains. Analyses of disease suppression revealed that LB14 was most effective for suppressing the incidence of anthracnose symptoms on pepper fruits. LB14 produced antagonistic compounds and suppressed conidial germination of C. acutatum and C. gloeosporioides. The results from the present study will provide a basis for developing a reliable alternative to fungicides for anthracnose control.

Screening of Multifunctional Bacteria with Biocontrol and Biofertilizing Effects (식물병원진균의 생물적 방제 및 생물비료 활성을 갖는 다기능 세균의 탐색)

  • Kim, Young-Sook;Lee, Myeong-Seok;Yeom, Ji-Hee;Song, Ja-Gyeong;Lee, In-Kyoung;Yun, Bong-Sik
    • The Korean Journal of Mycology
    • /
    • v.39 no.2
    • /
    • pp.126-130
    • /
    • 2011
  • In the course of search for multifunctional microbial inoculants, three Bacillus strains (BS11-1,BS11-2,BS11-3) with biological control and biofertilizing effects were selected. In this study, their ability for solubilization of insoluble phosphate, production of indole-3-acetic acid (IAA), siderophore, and hydrolytic enzymes, and antagonism against phytopathogenic fungi were estimated. All strains produced IAA and siderophore depending on culture time and produced a visible clear zone on agar plate containing 0.5% carboxylmethyl cellulose as a carbon source. Also, these strains exhibited antifungal activities against phytopathogenic fungi, Botrytis cinerea, Cylindrocarpon destructans, Fusarium oxysporum, Rhizoctonia solani, and Phytophthora capsici.

Plant Growth Promoting Activities of Some Rhizosphere Bacteria and their Effect on Brassica rapa Growth

  • Hussein, Khalid A.;Jung, Yeong Sang;Joo, Jin Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.3
    • /
    • pp.141-146
    • /
    • 2014
  • The necessity to develop economical and eco-friendly technologies is steadily increasing. Plant growth promoting rhizomicrobial strains PGPR are a group of microorganisms that actively colonize plant roots and increase plant growth and yield. Pot experiments were used to investigate the potential of some rhizobacterial strains to enhance the Brassica rapa growth. Microbial strains were successfully isolated from the rhizosphere of Panax ginseng and characterized based on its morphological and plant growth promotion characters. Surface disinfected seeds of Wisconsin Fast B. rapa were inoculated with the selected PGPR microorganisms. The different pots treatments were inoculated by its corresponding PGPR ($10^7cfu\;mL^{-1}$) and incubated in the growth chamber at $25^{\circ}C$ and 65% RH, the light period was adjusted to 24 hours (day). NPK chemical fertilizer and trade product (EMRO, USA) of effective microorganisms as well as un-inoculated control were used for comparison. Plants harvested in 40 days were found to have significant increase in leaf chlorophyll units and plant height and also in dry weight of root and shoot in the inoculated seedlings. Root and shoot length and also leaf surface area significantly were increased by bacterial inoculation in sterile soil. The study suggests that Rhodobacter capsulatus and Azotobacter chroococcum are beneficial for B. rapa growth as they enhance growth and induced IAA production and phosphorus solubilization. This study presents some rhizomicrobial strains that significantly promoted growth of Wisconsin Fast Plant B. rapa in pot experiment under different soil conditions.

Isolation and Characterization of Cold-Adapted PGPB and Their Effect on Plant Growth Promotion

  • Li, Mingyuan;Wang, Jilian;Yao, Tuo;Wang, Zhenlong;Zhang, Huirong;Li, Changning
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.9
    • /
    • pp.1218-1230
    • /
    • 2021
  • Cold-adapted plant growth-promoting bacteria (PGPB) with multiple functions are an important resource for microbial fertilizers with low-temperature application. In this study, culturable cold-adapted PGPB strains with nitrogen fixation and phosphorus solubilization abilities were isolated. They were screened from root and rhizosphere of four dominant grass species in nondegraded alpine grasslands of the Qilian Mountains, China. Their other growth-promoting characteristics, including secretion of indole-3-acetic acid (IAA), production of siderophores and ACC deaminase, and antifungal activity, were further studied by qualitative and quantitative methods. In addition, whether the PGPB strains could still exert plant growth-promoting activity at 4℃ was verified. The results showed that 67 isolates could maintain one or more growth-promoting traits at 4℃, and these isolates were defined as cold-adapted PGPB. They were divided into 8 genera by 16S rRNA gene sequencing and phylogenetic analysis, of which Pseudomonas (64.2%) and Serratia (13.4%) were the common dominant genera, and a few specific genera varied among the plant species. A test-tube culture showed that inoculation of Elymus nutans seedlings with cold-adapted PGPB possessing different functional characteristics had a significant growth-promoting effect under controlled low-temperature conditions, including the development of the roots and aboveground parts. Pearson correlation analysis revealed that different growth-promoting characteristics made different contributions to the development of the roots and aboveground parts. These cold-adapted PGPB can be used as excellent strain resources suitable for the near-natural restoration of degraded alpine grasslands or agriculture stock production in cold areas.

Preparation of enzymatic hydrolysate from defatted perilla seed residue and its application to Leuconostoc mesenteroides cultivation (탈지 들깨박 효소분해물의 제조와 Leuconostoc mesenteroides 배양에의 활용)

  • Shin, Yeung Sub;Lee, Tae Jung;In, Man-Jin;Kim, Dong Chung
    • Journal of Applied Biological Chemistry
    • /
    • v.64 no.1
    • /
    • pp.97-102
    • /
    • 2021
  • In this study, enzymes were screened for hydrolysis of defatted perilla seed residue (DPSR) and optimal conditions for enzymatic treatment were determined to produce the hydrolysate of DPSR. Also its antioxidant activity and utilization as a culture medium were examined. The combined treatment of Alcalase and Ceremix is most effective for solubilization of protein and carbohydrate in DPSR. The optimal dosage, pH, and reaction time for enzymatic treatment were found to be 2.0% (w/w), 7.0, and 2 h, respectively. Treatment with optimal conditions of enzymes dramatically increased reducing sugar, soluble protein, and total phenolic content. The hydrolysate of DPSR possessed better scavenging activity against cation and free radicals than enzyme-untreated extract. When Leuconostoc mesenteroides 310-12 was cultured in the hydrolysate of DPSR, cell population rapidly increased compared to enzyme-untreated extract, and titratable acidity increased in proportion to the bacterial growth. In conclusion, these results imply that the hydrolysate of DPSR could be utilized as a bacteria culture medium as well as a physiologically active material with antioxidant activity.

Rhizospheric-Derived Nocardiopsis alba BH35 as an Effective Biocontrol Agent Actinobacterium with Antifungal and Plant Growth-Promoting Effects: In Vitro Studies

  • Mohamed H. El-Sayed;Abd El-Nasser A. Kobisi;Islam A. Elsehemy;Mohamed A. El-Sakhawy
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.5
    • /
    • pp.607-620
    • /
    • 2023
  • The biocontrol approach using beneficial microorganisms to control crop diseases is becoming an essential alternative to chemical fungicides. Therefore, new and efficient biocontrol agents (BCA) are needed. In this study, a rhizospheric actinomycete isolate showed unique and promising antagonistic activity against three of the most common phytopathogenic fungi, Fusarium oxysporum MH105, Rhizoctonia solani To18, and Alternaria brassicicola CBS107. Identification of the antagonistic strain, which was performed according to spore morphology and cell wall chemotype, suggested that it belongs to the Nocardiopsaceae. Furthermore, cultural, physiological, and biochemical characteristics, together with phylogenetic analysis of the 16S rRNA gene (OP869859.1), indicated the identity of this strain to Nocardiopsis alba. The cell-free filtrate (CFF) of the strain was evaluated for its antifungal potency, and the resultant inhibition zone diameters ranged from 17.0 ± 0.92 to 19.5 ± 0.28 mm for the tested fungal species. Additionally, the CFF was evaluated in vitro to control Fusarium wilt disease in Vicia faba using the spraying method under greenhouse conditions, and the results showed marked differences in virulence between the control and treatment plants, indicating the biocontrol efficacy of this actinomycete. A promising plant-growth promoting (PGP) ability in seed germination and seedling growth of V. faba was also recorded in vitro for the CFF, which displayed PGP traits of phosphate solubilization (48 mg/100 ml) as well as production of indole acetic acid (34 ㎍/ml) and ammonia (20 ㎍/ml). This study provided scientific validation that the new rhizobacterium Nocardiopsis alba strain BH35 could be further utilized in bioformulation and possesses biocontrol and plant growth-promoting capabilities.

Assessment of Bio-corrosive Effect and Determination of Controlling Targets among Microflora for Application of Multi-functional CFB on Cement Structure (다기능 탄산칼슘 형성세균의 시멘트 건축물 적용위한 부식능 평가 및 건축물 정주미생물 중 방제 대상 결정)

  • Park, Jong-Myong;Park, Sung-Jin;Ghim, Sa-Youl
    • Journal of Life Science
    • /
    • v.25 no.2
    • /
    • pp.237-242
    • /
    • 2015
  • The use of calcite-forming bacteria (CFB) in crack remediation and durability improvements in construction materials creates a permanent and environmentally-friendly material. Therefore, research into this type of application is stimulating interdisciplinary studies between microbiology and architectural engineering. However, the mechanisms giving rise to these materials are dependent on calcite precipitation by the metabolism of the CFB, which raises concerns about possible hazards to cement-based construction due to microbial metabolic acid production. The aim of this study was to determine target microorganisms that possibly can have bio-corrosive effects on cement mortar and to assess multi-functional CFBs for their safe application to cement structures. The chalky test was first used to evaluate the $CaCO_3$ solubilization feature of construction sites by fungi, yeast, bacterial strains. Not all bacterial strains are able to solubilize $CaCO_3$, but C. sphaerospermum KNUC253 or P. prolifica KNUC263 showed $CaCO_3$ solubilization activity. Therefore, these two strains were identified as target microorganisms that require control in cement structures. The registered patented strains Bacillus aryabhatti KNUC205, Arthrobacter nicotianae KNUC2100, B. thuringiensis KNUC2103 and Stenotrophomonas maltophilia KNUC2106, reported as multifunctional CFB (fungal growth inhibition, crack remediation, and water permeability reduction of cement surfaces) and isolated from Dokdo or construction site were unable to solubilize $CaCO_3$. Notably, B. aryabhatti KNUC205 and A. nicotianae KNUC2100 could not hydrolyze cellulose or protein, which can be the major constituent macromolecules of internal materials for buildings. These results show that several reported multi-functional CFB can be applied to cement structures or diverse building environments without corrosive or bio-deteriorative risks.

Isolation and Characteristics of Bacteria Showing Biocontrol and Biofertilizing Activities (생물방제 및 생물비료 활성을 가지는 세균의 분리 및 특성)

  • Jung, Ho-Il;Kim, Keun-Ki;Park, Hyean-Cheal;Lee, Sang-Mong;Kim, Yong-Gyun;Kim, Hong-Sung;Lee, Cnung-Yeol;Son, Hong-Joo
    • Journal of Life Science
    • /
    • v.17 no.12
    • /
    • pp.1682-1688
    • /
    • 2007
  • To develop multifunctional microbial inoculant, microorganisms with antagonistic activity and biofertilizing activity were screened. Pantoea agglomerans and Bacillus megaterium from our laboratory culture collection, and strain MF12 from soil near poultry farm in Miryang were selected. On the basis of morphological, physiological studies and 16S rDNA sequence analysis, isolate MF12 was identified as the Bacillus pumilis. Three strains were studied for insoluble phosphate solubilization, indole-3-acetic acid (IAA) and siderophore production, ammonification ability, hydrolytic enzyme production and antifungal activity against phytopathogenic fungi. P. agglomerans did not produce any visible clear zone on agar plate containing 0.5% $Ca_3(PO_4){_2}$ as a sole phosphorus source. However, this strain could solubilize insoluble phosphate in liquid medium. All strains produced IAA ranged from $3{\sim}639{\mu}g/ml$ depending on culture time and had ammonification ability. Among three strains, only P. agglomerans produced siderophore. P. agglomerans produced pectinase and lipase, B. megaterium produced amylase, protease and lipase while B. pumilis produced protease and lipase. P. agglomerans showed antifungal activities against phytopathogenic fungi, Fusarium oxysporum and Colletotrichum gloeosporioides. B. pumilis showed antifungal activities against Botrytis cinerea, Sclerotinia sclerotiorum and Phythium ultimum.