• Title/Summary/Keyword: Microbial protease

Search Result 167, Processing Time 0.023 seconds

Isolation of a Potent Protease Producing Bacillus subtilis from Kimchi (김치로부터 단백질 분해 효소활성이 우수한 Bacillus subtilis 균주의 분리)

  • Choi, Chan-Yeong;Kim, Myoung-Dong
    • Microbiology and Biotechnology Letters
    • /
    • v.45 no.1
    • /
    • pp.12-18
    • /
    • 2017
  • Microbial strains exhibiting proteolytic activity were isolated from kimchi, one of traditional fermented foods in Korea. Eight strains formed clear zones around their colonies when grown on TSA plates supplemented with skim milk. MBE/L865 exhibited 2.6-fold higher protease activity than that of control strain (Bacillus subtilis KCTC13112). MBE/L865 was identified as B. subtilis and deposited in the Korean Collection for Type Cultures under the accession number of KCCM43059. The optimum growth conditions for B. subtilis KCCM43059 were determined to be $37^{\circ}C$ and pH 8. The strain showed maximum protease activity ($429.37{\pm}18.65U/mg$ protein) at $60^{\circ}C$ and pH 6. Further, B. subtilis KCCM43059 had a higher salt (NaCl) tolerance than that of the control strain.

Purification and Properties of the Factor from Arthrobacter luteus, Capable of Accelerating the Lysis of Yeast Cell Walls (Arthrobacter luteus가 생산(生産)하는 효모(酵母) 세포벽(細胞壁) 용해(溶解) 촉진인자(促進因子)의 정제(精製) 및 그 이화학적(理化學的) 성질(性質))

  • Oh, Hong Rock;Aizono, Yasuo;Shimoda, Tadahisa;Masaru, Funatsu
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.12 no.4
    • /
    • pp.387-394
    • /
    • 1983
  • The factor, which was capable of accelerating the yeast cell wall lysis of the zymolyase(${\beta}-1$, 3-glucanase), was purified to a homogeneous state from the protease fraction of the crude zymolyase by Sephadex G-75 gel filtration and preparative polyacrylamide gel disc electrophoresis. The molecular weight of the purified factor was estimated to be 40,500 by SDS-polylacrylamide gel disc electrophoresis and it's iso-electric point was pH 9.6. The factor was found to be a basic protease consisted of single polypeptide chain with 395 amino acid residues and it showed the $E_{280,cm}^{1%}$ of 11.9 and the molecular extinction coefficient of $4.83{\times}10^4$, respectively.

  • PDF

Effect of the Overexpression of the sprD Gene Encoding Streptomyces griseus Pretense D for the Differentiation of Streptomyces griseus HH1 (sprD유전자의 과발현이 Streptomyces griseus HH1의 분화에 미치는 영향)

  • 이재학
    • The Korean Journal of Food And Nutrition
    • /
    • v.15 no.4
    • /
    • pp.364-369
    • /
    • 2002
  • Streptomyces shows a eukaryotic characteristic that vegetative cell can grow into mycelial form and has morphological and physiological differentiation at a certain period during its life cycle. Streptomyces has been used for the production of many biologically active compounds, such as antibiotics and pronase. Production of second metabolites and differentiation of the vegetative cell share the certain period of its lift cycle. Therefore, second metabolites may affect the differentiation of the vegetative cell. One of the microbial hormone, called A-factor, regulates the production of second metabolites, sporulation and differentiation of the cells. Streptomyces griseus produces streptomycin as well as many different kinds of proteinase. As mentioned, period of proteinases production overlaps with the period of differentiation of the vegetative cells. Protease may play a important role for the differentiation of the cells. In this paper, function of the SGPD gene cloned from S. griseus IFO 13350 tested whether it affects for the differentiation of A-factor mutated S. griseus HH1 and S. griseus IFO13350. pWHM3 and pWHM3-sprD plasmid was transformed into S. griseus HH1 and S. griseus IFO13350. Chymotrypsin activity of the cultured medium of the transformants with pWHM3-sprD plasmid didn't show any change with that of the transformants with plasmid only. The transformants with pWHM3-sprD plasmid didn't show the increase of the production of actinorhodin as well as morphological change in S. griseus IFO 13350 and HH1, as well. The promoter sequences of the SGPA and SGPB gene which encode chymotrypsin-like protease, were compared with that of SGPD gene. Regulatory mechanism of gene expression of proteinase genes will be studied for the development of high production system for protease as well as the function of the proteases.

Impact of transgenic AFPCHI (Cucumis melo L. Silver Light) fungal resistance melon on soil microbial communities and enzyme activities

  • Bezirganoglu, Ismail;Uysal, Pinar
    • Journal of Plant Biotechnology
    • /
    • v.44 no.2
    • /
    • pp.156-163
    • /
    • 2017
  • A greenhouse experiment was conducted for evaluation of ecological effects of transgenic melon plants in the rhizospheric soil in terms of soil properties, enzyme activities and microbial communities. Organic matter content of soil under transgenic melon plants was significantly higher than that of soil with non-transgenic melon plants. Significant variations were observed in organic matter, total P and K in soil cultivation with transgenic melon plants. There were also significant variations in the total numbers of colony forming units of fungi, actinomycetes and bacteria between soils treated with transgenic and non-transgenic melon plants. Transgenic and non-transgenic melon significantly enhanced several enzymes activities including urease, acid phosphatase, alkalin phosphatase, arysulphtase, ${\beta}$ glucosidase, dehydrogenase, protease and catalase. Soil polyphenoloxidase activity of $T_1$ transgenic melon was lower than that of $T_0$ transgenic melon and a non-melon plant during the same period. The first generation transgenic melon plants ($T_0$) showed significantly greater (p<0.05) effect on the activitiy of arylsulfatase, which increased from $2.540{\times}10^6CFU\;g^{-1}$ (control) to $19.860{\times}10^6CFU\;g^{-1}$ ($T_0$). These results clearly indicated that transgenic melon might change microbial communities, enzyme activities and soil chemical properties.

Studies on the Development of a Microbial Cryoprotectant Formulation Using a W/O/W Multiple Emulsion System

  • Bae, Eun-Kyung;Cho, Young-Hee;Park, Ji-Yong
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.4
    • /
    • pp.673-679
    • /
    • 2004
  • A microbial cryoprotectant formulation using a W/O/W multiple emulsion system was developed. The psychrotolerant microorganism, B4, isolated from soil in South Korea, was observed by the drop freezing method, in which the microorganism sample inhibited ice nucleation activity. The antifreeze activity was eliminated when the microorganism sample was treated with protease, indicating that the antifreeze activity was due to the presence of antifreeze protein. The result of the l6S rDNA sequencing indicated the B4 strain was most closely related to a species of the genus Bacillus. Culture broth of B4 strain (Bacillus sp.) and rapeseed oil containing 1 % polyglycerine polyricinolate (PGPR) were used as core and wall material, respectively. The most stable W/O emulsion was prepared at a core/oil ratio of 1:2. The highest W/O/W emulsion stability was achieved when the primary emulsion to external aqueous phase containing 0.5% caster oil polyoxyethylene ether $(COG25^{TM})$ ratio was 1:1. Microcrystalline cellulose showed better W/O/W emulsion stability than other polymer types. The viability of cells in a W/O/W emulsion was higher than free cells during storage at $37^\circ{C}$. An acidic pH and UV exposure decreased the viability of free cells, but cells in W/O/W emulsion were more stable under these conditions.

Characterization of Bacillus luciferensis Strain KJ2C12 from Pepper Root, a Biocontrol Agent of Phytophthora Blight of Pepper

  • Kim, Hye-Sook;Sang, Mee-Kyung;Myung, Inn-Shik;Chun, Se-Chul;Kim, Ki-Deok
    • The Plant Pathology Journal
    • /
    • v.25 no.1
    • /
    • pp.62-69
    • /
    • 2009
  • In this study, we characterized the bacterial strain KJ2C12 in relation with its biocontrol activity against Phytophthora capsici on pepper, and identified this strain using morphological, physiological, biochemical, fatty acid methyl ester, and 16S rRNA gene sequence analyses. Strain KJ2C12 significantly (P=0.05) reduced both final disease severity and areas under the disease progress curves of 5-week-old pepper plants inoculated with P. capsici compared to buffer-treated controls. As for the production of antibiotics, biofilms, biosurfactant, extracellular enzyme, HCN, and swarming activity, strain KJ2C12 produced an extracellular enzyme with protease activity, but no other productions or swarming activity. However, Escherichia coli produced weak biofilm only. Strain KJ2C12 could colonize pepper roots more effectively in a gnotobiotic system using sterile quartz sand compared to E. coli over 4 weeks after treatments. However, no bacterial populations were detected in 10 mM $MgSO_4$ buffer-treated controls. Strain KJ2C12 produced significantly higher microbial activity than the $MgSO_4$-treated control or E. coli over 4 weeks after treatments. Bacterial strain KJ2C12 was identified as Bacillus luciferensis based on morphological, physiological, and biochemical characteristics as well as FAME and 16S rRNA gene sequence analyses. In addition, these results suggested that B. luciferensis strain KJ2C12 could reduce Phytophthora blight of pepper by protecting infection courts through enhanced effective root colonization with protease production and an increase of soil microbial activity.

Antifungal activity of a chitinase purified from bean leaves (강낭콩 잎에서 정제한 키틴분해효소의 항균활성)

  • Park, Ro-Dong;Song, Kyong-Sook;Jung, Ihn-Woong
    • Applied Biological Chemistry
    • /
    • v.35 no.3
    • /
    • pp.191-195
    • /
    • 1992
  • In order to elucidate the plant-microorganism relationship, we purified an ethylene-inducible, basic 30 KD endochitinase from bean leaves and studied its antifungal activity by a hyphal extension-inhibition assay. The purified chitinase was effective in the inhibition of hyphal growth of Aspergillus fumigatus, Botrytis cinerea, Fusarium oxysporum, Rhizoctonia solani, while microbial chitinases of Serratia marcescens and Streptomyces griceus, egg white lysozyme and papya protease didn't affect hyphal growth of the fungi. The chitinase degraded the cell walls of Micrococcus lysodeikticus, suggesting the lysozyme activity of the chitinase. We discussed the implication of the bifunctional chitinase/lysozyme activities of the protein with hydrolysis of chitin in the rapidly extending hyphae of the fungi.

  • PDF

Evaluation of Ciclopirox as a Virulence-modifying Agent Against Multidrug Resistant Pseudomonas aeruginosa Clinical Isolates from Egypt

  • Zakaria, Azza S.;Edward, Eva A.;Mohamed, Nelly M.
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.4
    • /
    • pp.651-661
    • /
    • 2019
  • Targeting the pathogen viability using drugs is associated with development of drug resistance due to selective pressure. Hence, there is an increased interest in developing agents that target bacterial virulence. In this study, the inhibitory effect of ciclopirox, an antifungal agent with iron chelation potential, on the microbial virulence factors was evaluated in 26 clinical MDR Pseudomonas aeruginosa isolates collected from Alexandria Main University Hospital, a tertiary hospital in Egypt. Treatment with 9 ㎍/ml ciclopirox inhibited the hemolytic activity in 70% isolates, reduced pyocyanin production, decreased protease secretion in 46% isolates, lowered twitching and swarming motility, and decreased biofilm formation by 1.5- to 4.5-fold. The quantitative real-time PCR analysis revealed that treatment with ciclopirox downregulated the expression levels of alkaline protease (aprA) and pyocyanin (phzA1). Ciclopirox is used to treat hematological malignancies and the systemic administration of ciclopirox is reported to have adequate oral absorption with a satisfactory drug safety profile. It is important to calculate the appropriate clinical dose and therapeutic index to reposition ciclopirox from a topical antifungal agent to a promising virulence-modifying agent agent against P. aeruginosa, a problematic Gram-negative pathogen.

Performance Properties of Multi-Functional Finishes on the Enzyme-Pretreated Wool/Cotton Blend Fabrics

  • Ammayappan, L.;Moses, J. Jeyakodi;Senthil, K. Asok;Raja, A.S.M.;Jimmy, Lam K.C.
    • Textile Coloration and Finishing
    • /
    • v.23 no.1
    • /
    • pp.1-10
    • /
    • 2011
  • Research information related to application of enzyme as pretreatment and subsequent functional finishing on wool blended textiles for imparting multi-functional properties is still scanty. Yarn-blended wool/cotton fabric was pretreated with both a cellulase (Bactosol-CA) or a protease (Savinase-16.0LEx) in individual, subsequently finished with Synthappret-BAP and ${\beta}$-cyclodextrin based combination to impart anti-shrink, anti-microbial, softening and anti-crease properties. The performance of the finished fabrics depended on type of finishing combinations applied rather than enzyme pretreatment. Savinase pretreatment followed by Synthappret+Ceraperm-MW combination finishing impart both anti-shrink property as well as softening, while Bactosol pretreatment followed by ${\beta}$-cyclodextrin and sanitize combination finishing impart antimicrobial activity as well as anti-shrink finish to the wool/cotton blend fabric.

Effect of Feeding Ficus infectoria Leaves on Rumen Microbial Profile and Nutrient Utilization in Goats

  • Singh, B.;Chaudhary, L.C.;Agarwal, N.;Kamra, D.N.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.6
    • /
    • pp.810-817
    • /
    • 2011
  • A feeding trial was conducted to study the effect of tannin rich Pakar (Ficus infectoria) leaves on microbial profile, rumen fermentation and nutrient utilization in goats. Eight goats divided in two groups were fed pakar leaves (experimental group) and green oats (control group) as sole roughage source along with a fixed quantity of concentrate mixture for a period of 3 months. Two metabolic trials of six days duration were conducted after 30 and 90 days of experimental feeding. The dry matter intake was significantly higher (p<0.05) and digestibility's of DM, OM, CP, EE, NDF and ADF were reduced in experimental as compared with the control group. The TDN intake was similar (236.52 vs. 240.39 g/d) in both the groups. All the animals were in positive nitrogen balance. The concentration of ammonia nitrogen, TVFA, lactic acid and activities of xylanase and protease were reduced in pakar leaves fed goats. The rumen microbial profile as obtained by MPN technique showed no change in total bacterial population but total fungi and cellulolytic bacteria were reduced (p<0.05), whereas, tannin degrading/tolerant bacteria increased with the feeding of pakar leaves. Real time PCR data revealed a decrease in Ruminococcus flavefaciens, an increase in methanogens and no change in the Fibrobacter succinogenes population by feeding of pakar leaves.