Browse > Article
http://dx.doi.org/10.5423/PPJ.2009.25.1.062

Characterization of Bacillus luciferensis Strain KJ2C12 from Pepper Root, a Biocontrol Agent of Phytophthora Blight of Pepper  

Kim, Hye-Sook (Laboratory of Plant Disease and Biocontrol, College of Lift Sciences and Biotechnology, Korea University)
Sang, Mee-Kyung (Laboratory of Plant Disease and Biocontrol, College of Lift Sciences and Biotechnology, Korea University)
Myung, Inn-Shik (Division of Agricultural Microbiology, National Academy of Agricultural Science, RDA)
Chun, Se-Chul (Department of Molecular Biotechnology, Konkuk University)
Kim, Ki-Deok (Laboratory of Plant Disease and Biocontrol, College of Lift Sciences and Biotechnology, Korea University)
Publication Information
The Plant Pathology Journal / v.25, no.1, 2009 , pp. 62-69 More about this Journal
Abstract
In this study, we characterized the bacterial strain KJ2C12 in relation with its biocontrol activity against Phytophthora capsici on pepper, and identified this strain using morphological, physiological, biochemical, fatty acid methyl ester, and 16S rRNA gene sequence analyses. Strain KJ2C12 significantly (P=0.05) reduced both final disease severity and areas under the disease progress curves of 5-week-old pepper plants inoculated with P. capsici compared to buffer-treated controls. As for the production of antibiotics, biofilms, biosurfactant, extracellular enzyme, HCN, and swarming activity, strain KJ2C12 produced an extracellular enzyme with protease activity, but no other productions or swarming activity. However, Escherichia coli produced weak biofilm only. Strain KJ2C12 could colonize pepper roots more effectively in a gnotobiotic system using sterile quartz sand compared to E. coli over 4 weeks after treatments. However, no bacterial populations were detected in 10 mM $MgSO_4$ buffer-treated controls. Strain KJ2C12 produced significantly higher microbial activity than the $MgSO_4$-treated control or E. coli over 4 weeks after treatments. Bacterial strain KJ2C12 was identified as Bacillus luciferensis based on morphological, physiological, and biochemical characteristics as well as FAME and 16S rRNA gene sequence analyses. In addition, these results suggested that B. luciferensis strain KJ2C12 could reduce Phytophthora blight of pepper by protecting infection courts through enhanced effective root colonization with protease production and an increase of soil microbial activity.
Keywords
Antagonistic bacteria; Bacillus luciferensis; Biological control; Phytophthora capsici;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 3  (Related Records In Web of Science)
연도 인용수 순위
1 Ball, R. J. and Sellers, W. 1966. Improved motility medium. Applied Microbiology 14:670-673   PUBMED
2 Boer, W., Gunnewiek, P. J. A. K., Lafeber, P., Janse, J. D., Spit, B. E. and Woldendorp, J. W. 1998. Anti-fimgal properties of chitinolytic dune soil bacteria. Soil BioI. Biochem. 30: 193-203   DOI   ScienceOn
3 Elad, Y. and Chet, L 1987. Possible role of competition for nutrients in biocontrol ofPythium damping-off by bacteria. Phytopathology 77: 190-195   DOI
4 Handelsman, J. and Stabb, E. V. 1996. Biocontrol of soilborne plant pathogens. Plant Cell 8: 1855-1869   DOI   ScienceOn
5 Jaroszuk-Sciset, J., Kurek, E., Winiarczyk, K., Baturo, A. and fukanowski, A. 2008. Colonization of root tissues and protection against Fusarium wilt of rye (Secale cereale) by nonpathogenic rhizosphere strains of Fusarium cufmorum. BioI. Control 45:297-307   DOI   ScienceOn
6 Kildea, S., Ransbotyn, v., Khan, M. R., Fagan, B., Leonard, G, Mullins, E. and Doohan, F. M. 2008. Bacillus megaterium shows potential for the biocontrol of septoria tritici blotch of wheat. Biol. Control. 47:37-45   DOI   ScienceOn
7 McSpadden Gardener, B. B. 2004. Ecology of Bacillus and Paenibacillus spp. in agricultural systems. Phytopathology 94:1252-1258   DOI   PUBMED   ScienceOn
8 Sang, M. K., Chiang, M. H., Yi, E. S., Park, K. W. and Kim, K. D. 2006. Biocontrol of Korean ginseng root rot caused by Phytophthora cacforum using antagonistic bacterial strains ISE 13 and KJ 1 R5. Plant Palllol. J 22: 103-106
9 Sang, M. K., Chun, S.-C. and Kim, K. D. 2008. Biological control of Phytophthora blight of pepper by antagonistic rhizobacteria selected from a sequential screening procedure. Biol. Control 46:424-433   DOI   ScienceOn
10 Schisler, D. A, Slininger, P. J., Behle, R. W. and Jackson, M. A 2004. Formulation of Bacilllls spp. for biological control of plant diseases. Phytopathology 94: 1267-1271   DOI   ScienceOn
11 Stead, D. E., 1989. Grouping of Xanthomonas campestris pathovars of cereals and grassed by fatty acid profiling. EPPO Bulletin 19:57-68   DOI
12 Yoshida, S., Hiradate, S., Tsukamoto, T, Hatakeda, K. and Shirata, A. 2001. Antimicrobial activity of culture filtrate of Bacillus amyloliquefaciens RC-2 isolated from mulberry leaves. Phytopathology 91 : 181-187   DOI   ScienceOn
13 Yamaguchi, S., Jeenes, D. J. and Archer, D. B. 2001. Proteinglutaminase trom CllIyseobacterium proteolyticum, an enzyme that deamidates glutaminyl residues in proteins purification, characterization and gene cloning. Eur. J. Biochem. 268: 1410-1421   DOI   ScienceOn
14 Kim, H. S., Sang, M. K., Jeun, Y. c., Hwang, B. K. and Kim, K. D. 2008. Sequential selection and efficacy of antagonistic rhizobactcria for controlling Phytophthora blight of pepper. Crop Prot. 27:436-443   DOI   ScienceOn
15 Bodour, A. A. and Miller-Maier, R. M. 1998. Application of a modified drop-collapse technique for surfactant quantitation and screening of biosurfactant-producing microorganisms. J Microbial. Methods 32:273-280   DOI   ScienceOn
16 Emmert, E. A. B. and Handelsman, J. 1999. Biocontrol of plant disease: a (Gram-) positive perspective. FEMS Microbiol. Lett. 171:1-9   DOI   ScienceOn
17 Ristaino, J. B. and Johnston, S. A 1999. Ecologically based approaches to management of Phytophthora blight on bell pepper. Plant Dis. 83: 1080-1089   DOI
18 Weisburg, W. G, Barns, S. M., Pelletier, D. A. and Lane, D. J. 1991. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol. 173 :697-703   DOI   PUBMED
19 SAS Institute. 1988. SAS/STAT user's guide; release 6.03. SAS Institute, Cary, NC, USA
20 Landa, B. B., Mavrodi, D. M., Thomashow, L. S. and Weller, D. M. 2003. Interactions between strains of 2,4-diacetylphloroglucinol- producing Pseudomonas fluorescens in the rhizosphere of wheat. Phytopathology 93:982-994   DOI   ScienceOn
21 O'Toole, G A, Pratt, L. A., Watnick, P. I., Newman, D. K., Weaver, V. B. and Kolter, R. 1999. Genetic approaches to study ofbiofilms. Methods Enzymol. 310:91-109   DOI   PUBMED
22 Hoffiand, E., Findenegg, GR. and Nelemans, J. A. 1989. Solubilization of rock phosphate by rape. Plant Soil 113:155-160   DOI
23 Shaner, G and Finney, R. E. 1977. The effect of nitrogen fertilization on the expression of slow-mildewing resistance in Knox wheat. Phytopathology 67: 1051-1056
24 Vries, W. and Stouthamer, A M. 1968. Fermentation of glucose, lactose, galactose. mannitol, and xylose by Bifidobacteria. J Bacteriol. 96:472-478   PUBMED
25 Kim, Y S., Jang, B., Chung, I.-M., Sang, M. K., Ku, H.-M., Kim, K. D. and Chun, S.-C. 2008. Enhancement ofbiocontrol activity of antagonistic ChryseobacteriulIl strain KJI R5 by adding carbon sources against Phytophthora capsici. Plant Pathol. J. 24:164-170   DOI   ScienceOn
26 Kumar, S., Tamura, K. and Nei, M. 2004. MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Briefings in Bioinformatics 5: 150-163   DOI   ScienceOn
27 Tombolini, R., Gaag, D. J., Gerhardson, B. and Jansson, J. K. 1999. Colonization pattern ofthe biocontrol strain Pseudomonas chlororaphis MA 342 on barley seeds visualized by using green fluorescent protein. Appl. Environ. Microbiol. 65:3674-3680   PUBMED
28 Fritze, D. 2004. Taxonomy of the genus Bacillus and related genera: The aerobic endospore-forming bacteria. Phytopathology 94:1245-1248   DOI   PUBMED   ScienceOn
29 Demoz, B. T. and Korsten, L. 2006. Bacillus subtilis attachment, colonization, and survival on avocado flowers and its mode of action on stem-end rot pathogens. Biol. Control 3 :68-74   DOI   ScienceOn
30 Williams, S. T., Sharpe, M. E., Holt, J. G, Murray, R. G. E., Brenner, D. J., Krieg, N. R., Moulder, J. w., Pfelmig, N., Sneath, P. H. A. and Staley, J. T 1989. Bergey's Manual of Systematic Bacteriology, Vol. 4., Williams & Willkins, Co., Baltimore, USA, 2648pp
31 Gerhardt, P. 1994. Methods for general and molecular bacteriology, 2nd ed. American Society for Microbiology. Washington D.C., USA, 791pp
32 Kamilova, F., Validov, S., Azarova, T., Mulders, J. and Lugtenberg, B. 2005. Enrichment for enhanced competitive plant root tip colonizers selects for a new class of biocontrol bacteria. Environ. Microbial. 7: 1809-1817   DOI   ScienceOn
33 Reva, O. N., Dixelius, C, Meijer, J. and Priest, F. G 2004. Taxonomic characterization and plant colonizing abilities of some bacteria related to Bacillus amyloliquefaciens and Bacillus subtilis. FEMS Microbiol. Ecol. 48:249-259   DOI   ScienceOn
34 Lee, K. J., Kamala-Kannan, S., Sub, H. S., Seong, C K. and Lee, G W. 2008. Biological control of Phytophthora blight in red pepper (Capsicum annuum L.) using Bacillus subtilis. World J Microbiol. Biotechnol. 24: 1139-1145   DOI   ScienceOn
35 Simons, M., Bij, A. J., Brand, I., Weger, L. A, Wijffelman, C. A and Lugtenberg, B. J. J. 1996. Gnotobiotic system for studying rhizosphere colonization by plant growth-promoting Pseudomonas bacteria. Mol. Plant-Microbe Interact. 9:600-607   DOI   PUBMED   ScienceOn
36 Caesar, A. J. and Burr, T. J. 1987. Growth promotion of apple seedlings and rootstocks by specific strains of bacteria. Phytopathology 77:1583-1588   DOI
37 SchnUrer, J. and Rosswall, T 1982. Fluorescein diacetate hydrolysis as a measure of total microbial activity in soil and litter. Appl. Environ. Microbiol. 43:1256-1261   PUBMED
38 Ongena, M. and Jacques, P. 2008. Bacillus lipopeptides: versatile wcapons for plant disea~e biocontrol. Trends. Microbiol. 16:115-125   DOI   ScienceOn
39 Chang, S. H., Lee, J. Y., Kim, K. D. and Hwang, B. K. 2000. Screening for in vitro antifimgal activity of soil bacteria against plant pathogens. Mycobiology 28: 190-192
40 Yuen, G Y. and Schroth, M. N. 1986. Interactions of Pseudomonasfluorescens strain E6 with ornamental plants and its effect on the composition of root-colonizing microflora. Phytopathology 76: 176-180   DOI
41 Idris, H. A., Labuschagne, N. and Korsten, L. 2008. Suppression of Pythium ultimum root rot of sorghum by rhizobacterial isolates from Ethiopia and South Africa. BioI. Control. 45:72-84   DOI   ScienceOn
42 Lee, J. Y, Kim, H. S., Kim, K. D. and Hwang, B. K. 2004.In vitro anti-oomycete activity and in vivo control efficacy of phenylacetic acid against Phytophthora capsici. Plant Pathol. J 20:177-183   DOI   ScienceOn
43 Schmidt, C. S., Agostini, F., Leitert, C, Killham, K. and Mullins, C. E. 2004. Influence of soil temperature and matric potential on sugar beet seedling colonization and suppression of Pythium damping-off by the antagonistic bacteria Pseudomonas fluorescens and Bacillus subtilis. Phytopathology 94:351-363   DOI   ScienceOn
44 Kohler. T, Curty, L. K., Barja, F., Delden, C. and Pechere, J. C. 2000. Swanning of Pseudomonas aeruginosa is dependent on cell-to-cell signaling and requires flagella and pili. J Bacteriol. 182:5990-5996   DOI   ScienceOn
45 Castric, K. F. and Castric, P. A. 1983. Method for rapid detection of cyanogenic bacteria. Appl. Environ. Microbiol. 45 :701-702   PUBMED
46 Han, J., Sun, L., Dong, X., Cai, Z., Sun, X., Yang, H., Wang, Y. and Song, W. 2005. Characterization of a novel plant growthpromoting bacteria strain Delftia tsuruhatensis HR4 both as a diazotroph and a potential biocontrol agent against various plant pathogens. Syst. Appl. Microbiol. 28:66-76   DOI   ScienceOn