• Title/Summary/Keyword: Microbial formulation

Search Result 77, Processing Time 0.037 seconds

Control Effects of Micromonospora sp. AW050027 by Media Optimization and Microbial Treatment Against Pine Wood Nematode (Micromonospora sp. AW050027 균주의 배지최적화 및 미생물제제 처리에 의한 소나무재선충 방제효과)

  • Park, Dong-Jin;Lee, Jae-Chan;Chang, Yong-Ha;Kim, Chang-Jin
    • The Korean Journal of Pesticide Science
    • /
    • v.14 no.2
    • /
    • pp.138-147
    • /
    • 2010
  • Nematicidal activity against pine wood nematode, Bursaphelenchus xylophilus, was tested in the pot and field by the treatment of microbial formulation after media optimization. The optimized media composition was glycerol 10 g, soybean meal 10 g, NaCl 1 g, $CaCO_3$ 2 g, $K_2HPO_4$ 0.125 g per liter and microbial complex formulation was made with liquid and powder type. Most effective antibiotics against symbiotic microorganism with nematode, kanamycin, was added to the formulation. The control effects against pine wood nematodes were checked by pot test and field test. In the result of treatment by trunk injection, five times treatment was more effective than one time and the treatment with the formulation of concentrated culture supernatant was the most effective in the nematicidal activity showing below 10% mortality in pine tree.

Biocontrol Efficacy of Formulated Pseudomonas chlororaphis O6 against Plant Diseases and Root-Knot Nematodes

  • Nam, Hyo Song;Anderson, Anne J.;Kim, Young Cheol
    • The Plant Pathology Journal
    • /
    • v.34 no.3
    • /
    • pp.241-249
    • /
    • 2018
  • Commercial biocontrol of microbial plant diseases and plant pests, such as nematodes, requires field-effective formulations. The isolate Pseudomonas chlororaphis O6 is a Gram-negative bacterium that controls microbial plant pathogens both directly and indirectly. This bacterium also has nematocidal activity. In this study, we report on the efficacy of a wettable powder-type formulation of P. chlororaphis O6. Culturable bacteria in the formulated product were retained at above $1{\times}10^8$ colony forming units/g after storage of the powder at $25^{\circ}C$ for six months. Foliar application of the diluted formulated product controlled leaf blight and gray mold in tomato. The product also displayed preventative and curative controls for root-knot nematode (Meloidogyne spp.) in tomato. Under laboratory conditions and for commercially grown melon, the control was at levels comparable to that of a standard commercial chemical nematicide. The results indicated that the wettable powder formulation product of P. chlororaphis O6 can be used for control of plant microbial pathogens and root-knot nematodes.

Studies on the Development of a Microbial Cryoprotectant Formulation Using a W/O/W Multiple Emulsion System

  • Bae, Eun-Kyung;Cho, Young-Hee;Park, Ji-Yong
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.4
    • /
    • pp.673-679
    • /
    • 2004
  • A microbial cryoprotectant formulation using a W/O/W multiple emulsion system was developed. The psychrotolerant microorganism, B4, isolated from soil in South Korea, was observed by the drop freezing method, in which the microorganism sample inhibited ice nucleation activity. The antifreeze activity was eliminated when the microorganism sample was treated with protease, indicating that the antifreeze activity was due to the presence of antifreeze protein. The result of the l6S rDNA sequencing indicated the B4 strain was most closely related to a species of the genus Bacillus. Culture broth of B4 strain (Bacillus sp.) and rapeseed oil containing 1 % polyglycerine polyricinolate (PGPR) were used as core and wall material, respectively. The most stable W/O emulsion was prepared at a core/oil ratio of 1:2. The highest W/O/W emulsion stability was achieved when the primary emulsion to external aqueous phase containing 0.5% caster oil polyoxyethylene ether $(COG25^{TM})$ ratio was 1:1. Microcrystalline cellulose showed better W/O/W emulsion stability than other polymer types. The viability of cells in a W/O/W emulsion was higher than free cells during storage at $37^\circ{C}$. An acidic pH and UV exposure decreased the viability of free cells, but cells in W/O/W emulsion were more stable under these conditions.

Application of Phytase, Microbial or Plant Origin, to Reduce Phosphorus Excretion in Poultry Production

  • Paik, InKee
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.1
    • /
    • pp.124-135
    • /
    • 2003
  • In order to prevent pollution from animal waste, the excretion of nutrients should be reduced through proper nutritional management. Among the many nutrients of concern, such as N, P, Cu, Zn and K, P is one of the most concerned nutrients to be managed. Seven feeding trials, three with layers and four with broilers, were conducted to determine if microbial phytase supplementation can reduce non-phytate phosphorus (NPP) level in diets and results in concomitant reductions of P excretion. The results showed that microbial phytase can be successfully used to achieve these purposes. Activity of natural phytase in certain plant feedstuffs is high enough to be considered in feed formulation. Three experiments have been conducted to study the characteristics of plant phytase and its application to feeding of broilers. Selected brands of wheat bran could be successfully used as a source of phytase in broiler feeding.

The Study of Preservative System in Cosmetics using Botanical Antimicrobial (식물유래 천연항균제를 이용한 화장품에서의 방부시스템에 관한 연구)

  • Shim, Seung-Bo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.5
    • /
    • pp.1344-1348
    • /
    • 2008
  • Anti-microbial activities of Scutellariae Radix Extracts and Sophora flavecens Extracts was tested by formulation, such as skinsoftener, emulsion for 4 weeks. Control contained no preservative, test group contained 1.00% Scutellariae Radix extracts and 1.00% Sophora flavecens extracts and positive control contained parabens and imidazolidinyl urea. To determine the anti-microbial activity of these extract, the 4 germs such as Escherichia coil, Pseudomonas aeruginosa, Staphylococcus aures, Canida albicans were used. The test groups showed significant anti-microbial activities against the 4 germs at 2 and 3 weeks as compared with control. Anti-microbial activities of these extracts were similar to positive control. Considering that the Scutellariae Radix Extracts and the Sophora flavecens Extracts have a significant anti-microbial activities against 4 germs, it is possible as natural preservative in cosmetics.

Influence of Panax ginseng formulation on skin microbiota: A randomized, split face comparative clinical study

  • Hou, Joon Hyuk;Shin, Hyunjung;Shin, Hyeji;Kil, Yechan;Yang, Da Hye;Park, Mi Kyeong;Lee, Wonhee;Seong, Jun Yeup;Lee, Seung Ho;Cho, Hye Sun;Yuk, Soon Hong;Lee, Ki Yong
    • Journal of Ginseng Research
    • /
    • v.46 no.2
    • /
    • pp.296-303
    • /
    • 2022
  • Background: Skin microbiota is important for maintenance of skin homeostasis; however, its disturbance may cause an increase in pathogenic microorganisms. Therefore, we aimed to develop a red ginseng formulation that can selectively promote beneficial bacteria. Methods: The effects of red ginseng formulation on microorganism growth were analyzed by comparing the growth rates of Staphylococcus aureus, S. epidermidis, and Cutibacterium acnes. Various preservatives mixed with red ginseng formulation were evaluated to determine the ideal composition for selective growth promotion of S. epidermidis. Red ginseng formulation with selected preservative was loaded into a biocompatible polymer mixture and applied to the faces of 20 female subjects in the clinical trial to observe changes in the skin microbiome. Results: Red ginseng formulation promoted the growth of S. aureus and S. epidermidis compared to fructooligosaccharide. When 1,2-hexanediol was applied with red ginseng formulation, only S. epidermidis showed selective growth. The analysis of the release rates of ginsenoside-Rg1 and -Re revealed that the exact content of Pluronic F-127 was around 11%. The application of hydrogel resulted in a decrease in C. acnes in all subjects. In subjects with low levels of S. epidermidis, the distribution of S. epidermidis was significantly increased with the application of hydrogel formulation and total microbial species of subjects decreased by 50% during the clinical trial. Conclusion: We confirmed that red ginseng formulation with 1,2-hexanediol can help maintain skin homeostasis through improvement of skin microbiome.

Influence of Soil Microbial Biomass on Growth and Biocontrol Efficac of Trichoderma harzianum

  • Bae, Yeoung-Seuk;Guy R. Kundsen;Louise-Marie C. Dandurand
    • The Plant Pathology Journal
    • /
    • v.18 no.1
    • /
    • pp.30-35
    • /
    • 2002
  • The hyphal growth and biocontrol efficacy of Trichodemo harzianum in soil may depend on its interactions with biotic components of the soil environment. The effect of soil microbial biomass on growth and biocontrol efficacy of T. hanianum isolate ThzIDl-M3 (green fluorescent protein transformant) was investigated using artificially prepared different levels of soil microbial biomass (153,328, or 517ug biomass carbon per g of dry soil; BC). The hyphal growth of T. harzanum was significantly inhibited in the soil with 328 or 517 $\mu$g BC compared with 153 ug BC. When ThzIDl-M3 was added to the soils as an alginate pellet formulation, the recoverable population of ThzIDl-M3 varied, but the highest population occurred in 517ug BC. Addition of alginate pellets of ThzIDl-M3 to the soils (10 per 50 g) resulted in increased indigenous microbial populations (total fungi, bacterial fluorescent Pseudomonas app., and actinomycetes). Furthermore, colonizing ability of ThzIDl-M3 on sclerotia of Sclerotinia sclerotiorum was significantly reduced in the soil with high revel of BC. These results suggest that increased soil microbial biomass contributes to increased interactions between introduced T. harzianum and soil microorganisms, consequently reducing the biocontrol efficacy of 1T. harzianum.

Ethanolamine and boron abuse to limit microbial growth in water-synthetic metalworking fluids (미생물 성장을 억제하기 위하여 수용성 절삭유에 과다하게 첨가한 붕소와 아민 사례 연구)

  • Park, Donguk;Paik, Dohyeon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.15 no.3
    • /
    • pp.270-276
    • /
    • 2005
  • This study was conducted to examine whether a specific synthetic metalworking fluid (MWF), "A", in use for 10 months without replacement, displayed microbial resistance and to identify the additives associated with the control of microbial growth. Three synthetic MWF products ("A", "B", and "C") were studied every week for two months. Microbial deterioration of the fluids was assessed through evaluation by endotoxin, bacteria and fungi levels in the MWFs. In addition, formaldehyde, boron, ethanolamine, and copper levels were also studied to determine whether they influence microbial growth in water-based MWFs. Throughout the entire study in the sump where MWF "A" was used, bacteria counts were lower than 103 CFU/mL, and endotoxins never exceeded 103 EU/mL. These levels were significantly lower than levels observed in sumps badly deteriorated with microbes. Boron levels in MWF "A" ranged from 91.7 to 129.6 ppm, which was significantly higher than boron levels found in other MWF products. The total level of ethanolamine (EA) in MWF "A" ranged from 35,595 to 57,857 ppm (average 40,903 ppm), which was over ten times higher than that found in other MWFs. Monoethanolamine (MEA), diethanolamine (DEA) and triethanolamine (TEA) concentrations in MWF "A" were also significantly higher than seen in other MWFs. However, although EA and boron might improve anti-microbial performance, their abuse can pose a serious risk to workers who handle MWFs. From an industrial hygiene perspective, our study results stress that the positive synergistic effect of boron and EA in reducing microbial activity in MWF must be balanced with the potentially negative health effects of such additives. Our study also addresses the disadvantage of failing to comprehensively report MWF additives on Material Safety Data Sheets (MSDS). Future research in MWF formulation is needed to find the best level of EA and boron for achieving optimal synergistic anti-microbial effects while minimizing employee health hazards.

미생물을 이용한 다용도 고형 탈취제의 개발

  • Kim, Yu-Jin;Lee, Eun-Jeong;Jeon, Mi-Uk;Kim, Cho-Hui;Park, Seong-Hun;Lee, Eun-Yeol
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.513-516
    • /
    • 2001
  • This study was to develop of efficient microbial agent for malodor removal. Total ten strains of beneficial bacteria Bacillus sp., Pseudomonas sp., and photosynthetic bacteria were isolated and identified on the basis of their morphological and biochemical characteristics. The enzyme activities such as amylase, protease, lipase and cellulase of bacteria cells were measured. Furthennore, effective formulation procedure 、 ,vas developed with nutrient additive, stabilizing agent and mineral materix. For preparation of microbial agent, developing of formulation technique was very helpful for incresing the cell survival rate.

  • PDF

Growth Effects of Microbial Fertilizer Containing Bacillus amyloliquefaciens in Lettuce (Bacillus amyloliquefaciens 함유 비료 처리에 의한 상추의 생육 증대 효과)

  • Kim, Young-Sun;Cho, Sung-Hyun;Lee, Hoonsoo;Lee, Geung-Joo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.29 no.4
    • /
    • pp.15-24
    • /
    • 2021
  • This study was conducted to evaluate effects of microbial fertilizer (MF) containing Bacillus amyloliquefaciens on the growth in the lettuce by treating MF without and with organic fertilizer (OF), or by its formulation types, and to investigate its application in the eco-friendly agriculture. B. amyloliquefaciens, active microbe of MF, had activities of amylase and protease. Applied only MF without OF, MF treatments were not significantly different with non-fertilizer (NF). As compared to control, dry weight of MOF2 treatment (2,500 kg OF/ha + 50 kg MF/ha) was increased by about 30%. As applied with wettable powder type (WP) and soluble powder type (SP) of MF, the dry weight of WP was increased by 43% than that of control, but SP not significantly different. In the comparison with two MF formulation, dry weight of WP was increased by about 37% than that of SP. These results indicated that an application of MF improved the growth of lettuce by prompting a mineralization of OF, and that the formulation type of MF was better WP than SP.