Browse > Article
http://dx.doi.org/10.5423/PPJ.2002.18.1.030

Influence of Soil Microbial Biomass on Growth and Biocontrol Efficac of Trichoderma harzianum  

Bae, Yeoung-Seuk (Plant Pathology Division, National Institute of Agricultural Science and Technology)
Guy R. Kundsen (Department of Plant, Soil, and Entomological Sciences, College of Agriculture, University of Idaho, Moscow)
Louise-Marie C. Dandurand (Plant Pathology Division, National Institute of Agricultural Science and Technology, RDA, Suwon)
Publication Information
The Plant Pathology Journal / v.18, no.1, 2002 , pp. 30-35 More about this Journal
Abstract
The hyphal growth and biocontrol efficacy of Trichodemo harzianum in soil may depend on its interactions with biotic components of the soil environment. The effect of soil microbial biomass on growth and biocontrol efficacy of T. hanianum isolate ThzIDl-M3 (green fluorescent protein transformant) was investigated using artificially prepared different levels of soil microbial biomass (153,328, or 517ug biomass carbon per g of dry soil; BC). The hyphal growth of T. harzanum was significantly inhibited in the soil with 328 or 517 $\mu$g BC compared with 153 ug BC. When ThzIDl-M3 was added to the soils as an alginate pellet formulation, the recoverable population of ThzIDl-M3 varied, but the highest population occurred in 517ug BC. Addition of alginate pellets of ThzIDl-M3 to the soils (10 per 50 g) resulted in increased indigenous microbial populations (total fungi, bacterial fluorescent Pseudomonas app., and actinomycetes). Furthermore, colonizing ability of ThzIDl-M3 on sclerotia of Sclerotinia sclerotiorum was significantly reduced in the soil with high revel of BC. These results suggest that increased soil microbial biomass contributes to increased interactions between introduced T. harzianum and soil microorganisms, consequently reducing the biocontrol efficacy of 1T. harzianum.
Keywords
biological control; Sclerotinia sclerotiorum; soil biomass; soil microorganisms; Trichodema harfianum.;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Papavizas, G. C. 1985. Trichoderma and Gliocladium: Biology, ecology, and potential for biocontrol. Annu. Rev. Phytopathol. 23:23-54   DOI   ScienceOn
2 Bae, Y.-S. and Knudsen, G. K. 2000. Cotransformation of Trichoderma harzianum with \beta-glucuronidase and green fluorescent protein genes provides a useful tool for monitoring fungal growth and activity in natural soils. Appl. Environ. MicrobioI. 66:810-815   DOI
3 Dandurand, L. M. and Knudsen, G. R. 1993. Influence of Pseudomonas fluorescens on hyphal growth and biocontrol activity of Trichoderma harzianum in the spermosphere and rhizosphere of pea. Phytopathology 83:265-270   DOI   ScienceOn
4 Fravel, D. R. 1988. The role of antibiosis in biocontrol of plant diseases. Annu. Rev. Phytopathol. 26:75-91   DOI   ScienceOn
5 Lemanceau, P., Corberand, T., Gardan, L., Latour, X., Laguerre, G., Boeufgras, J. and Alabouvette, C. 1995. Effect of two plant species, flax (Linum usitatissinum L.) and tomato (Lycopersicon escuIentum Mill.), on the diversity of soil-borne popula tions of fluorescent pseudomonads. Appl. Environ. Microbiol. 61:1004-1012
6 Mackie, A. E. and Wheatley, R. E. 1999. Effects and incidence of volatile organic compound interactions between soil bacterial and fungal isolates. Soil Biol. Biochem. 31:375-385   DOI   ScienceOn
7 Van de Werf, H. and Verstraete, W. 1987. Estimadon of active soil microbial biomass by mathematical analysis of respiration curves: Calibration of the test procedure. Soil Biol. Biochem. 19:261-265   DOI   ScienceOn
8 Knudsen, G. R., Eschen, D. J., Dandurand, L. M. and Bin, L. 1991. Potential for biocontrol of Sclerotinia sclerotiorum through colonization of scleroda by Trichoderma harzanum. Plant Dis. 75:466-470   DOI
9 Oades, J. M. and Jenkinson, D. S. 1979. Adenosine triphosphate content of the soil microbial biomass. Soil BioI. Biochem. 11:201-204   DOI   ScienceOn
10 Hubbard, J. P., Harman, G. E. and Hadar, Y. 1983. Effect of soiIborne Pseudomonas spp. on the biological control agent, Trichoderma hamatum, on pea seeds. Phytopathology 73:655-659   DOI
11 Eastbum, D. M. and Butler, E. E. 1988b. Microhabitat Characterization of Trichoderma harzianum in natural soil: Evaluation of factors affecting distribution. SoiI Biol. Biochem. 20:547-553   DOI   ScienceOn
12 Lundquist, E. J., Scow, K. M., Jackson, L. E., Uesugi, S. L. and Johnson, C. R. 1999. Rapid response of soil microbial communities from conventional, low input, and organic farming systems to a wet/dry cycle. Soil Biol. Biochem. 31:1661-1675   DOI   ScienceOn
13 Jenkinson, D. S. and Powlson, D. S. 1976. The effects of treatments on metabolism in soil. V. A method for measuring soil biomass. Soil Biol. Biochem. 8:209-213   DOI   ScienceOn
14 Knudsen, G. R. and Bin, L. 1990. Effects of temperature, soil moisture, and wheat bran on growth of Trichoderma harzianum from alginate pellets. Phytopathology 80:724-727   DOI
15 Jenkinson, D. S. and Oades, J. M. 1979. A method for measuring adenosine thphosphate in soil. SoiI BioI. Biochem. 11:193-199   DOI   ScienceOn
16 Eastburn, D. M. and Butler, E. E. 1988a. Microhabitat Characterization of Trichoderma harzianum in natural soil: Evaluation of factors affecting population density. SoiI Biol. Biochem. 20:541-545   DOI   ScienceOn
17 Bin, L., Knudsen, G. R. and Eschen, D. J. 1991. Influence of an antagonistic strain of Pseudomonas fluorescens on growth and ability of Trichoderma harzianum to colonize sclerotia of Sclerotinia sclerotiorum in soil. PhytopathoIogy 81:994-1000   DOI
18 Chet, I. 1987. Trichoderma- Application, mode of action, and potential as biocontrol agent of soilborne plant pathogenic fungi. In: Inovation approaches to pIant disease controI, ed. by I. Chet, pp. 137-160. John Wiley & Sons, New York, N.Y
19 Hadar, Y., Harman, G. E. and Taylor, A. G. 1984. Evaluation of Trichoderma koningii and T. harzianum from New York soils for biological control of seed rot caused by Pythium spp. Phytopathology 74:106-110   DOI
20 Dalal, R. C., Henderson, P. A. and Guasby, J. M. 1991. Organic matter and microbial biomass in a Vertisol after 20 years of zero-tillage. Soil BioI. Biochem. 23:435-441   DOI   ScienceOn
21 Bae, Y.-S. and Knudsen, G. K. 2001. Influence of a fungus-feeding nematode on growth and biocontrol efficacy of Trichoderma harzianum. PhytopathoIogy 91:301-306   DOI   ScienceOn
22 Stack, J. P., Kenerley, C. M. and Pettit, R. E. 1987. Influence of carbon and nitrogen sources, relative carbon and nitrogen concentrations, and soil moisture on the growth in nonsterile soil of soilborne fungal antagonists. Can. J. Microbiol. 33:626-631   DOI
23 Lumsden, R. D. 1990. Comparison of biomass and viable propagule measurements in the antagonism of Trichoderma haruanum against Pythium ultimum. Soil Biol. Biochem. 22:187-194   DOI   ScienceOn
24 Dhingra, O. D. and Sinclair, J. B. 1985. Basic plant pathology methods. CRC Press, Inc. Boca Raton, Florida. 355 pp
25 Elad, Y, Chet, I. and Henis, Y. 1981. A selective medium for improving quantitadve isolation of Trichoderma spp. from soil. Phytoparasitica 9:245-254