• 제목/요약/키워드: Microbial culture

검색결과 878건 처리시간 0.033초

Effect of feeding mixed microbial culture fortified with trace minerals on ruminal fermentation, nutrient digestibility, nitrogen and trace mineral balance in Sheep

  • Kwak, W.S.;Kim, Y.I.;Choi, D.Y.;Lee, Y.H.
    • Journal of Animal Science and Technology
    • /
    • 제58권5호
    • /
    • pp.21.1-21.8
    • /
    • 2016
  • Background: The aim of the present study was to determine the effects of feeding trace mineralsfortified mixed microbial culture (TMC) on ruminal fermentation, nutrient digestibility, blood electrolyte status, nitrogen balance, and trace mineral balance in sheep. Methods: Mixed microbes [0.6 % (v/w) of Enterobacter sp., Bacillus sp., Lactobacillus sp., and Saccharomyces sp.] were cultured with 99 % feedstuffs and 0.4 % trace minerals including zinc and copper for ensiling. Six sheep (a mean body weight of $46.5{\pm}1.2kg$) were fed two diets: a control diet (concentrate mix and rye straw) and an experimental diet (a control diet + 3.1 % TMC). Results: TMC feeding did not induce negative effects on ruminal fermentation, nutrient digestibility, blood electrolytes, and nitrogen balance in sheep. Feeding with TMC increased the intake of trace minerals (p < 0.05) and did not affect absorption of trace minerals in the whole digestive tract. Feeding with TMC increased fecal excretion and absorbable intake, and retention of zinc and copper (p < 0.05) by 71 % and 77 %, respectively. Conclusion: Feeding with TMC resulted in higher zinc and copper bioavailability and retention without any adverse effects on sheep performance.

Conversion of G. hansenii PJK into Non-cellulose-producing Mutants According to the Culture Condition

  • Park, Joong-Kon;Hyun, Seung-Hun;Jung, Jae-Yong
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제9권5호
    • /
    • pp.383-388
    • /
    • 2004
  • The conversion of a cellulose-producing cell ($Cel^+$) from Gluconacetobacter hansenii PJK (KCTC 10505 BP) to a non-cellulose-producing cell ($Cel^-$) was investigated by measuring the colony forming unit (CFU). This was achieved in a shaking flask with three slanted baffles, which exerted a strong shear stress. The addition of organic acid, such as glutamic acid and acetic acid, induced the conversion of microbial cells from a wild type to $Cel^-$ mutants in a flask culture. The supplementation of $1\%$ ethanol to the medium containing an organic acid depressed the con-version of the microbial cells to $Cel^-$ mutants in a conventional flask without slanted baffles. The addition of ethanol to the medium containing an organic acid; however, accelerated the conversion of microbial cells in the flask with slanted baffles. The $Cel^+$ cells from the agitated culture were not easily converted into $Cel^-$ mutants on the additions of organic acid and ethanol to a flask without Slanted baffles, but some portion of the $Cel^+$ cells were converted to $Cel^-$ mutants in a flask with slanted baffles. The conversion ratio of $Cel^+$ cells to $Cel^-$ mutants was strongly re-lated to the production of bacterial cellulose independently from the cell growth.

Isolation of a Lipolytic and Proteolytic Bacillus licheniformis from Refinery Oily Sludge and Optimization of Culture Conditions for Production of the Enzymes

  • Devi, Sashi Prava;Jha, Dhruva Kumar
    • 한국미생물·생명공학회지
    • /
    • 제48권4호
    • /
    • pp.515-524
    • /
    • 2020
  • With the increasing demand for enzymes in industrial applications there is a growing need to easily produce industrially important microbial enzymes. This study was carried out to screen the indigenous refinery bacterial isolates for their production of two industrially important enzymes i.e. lipase and protease. A total of 15 bacterial strains were isolated using Soil Extract Agar media from the oil-contaminated environment and one was shown to produce high quality lipase and protease enzymes. The culture conditions (culture duration, temperature, source of nitrogen, carbon, and pH) were optimized to produce the optimum amount of both the lipase (37.6 ± 0.2 Uml-1) and the protease (41 ± 0.4 Uml-1) from this isolate. Productivity of both enzymes was shown to be maximized at pH 7.5 in a medium containing yeast extract and peptone as nitrogen sources and sucrose and galactose as carbon sources when incubated at 35 ± 1℃ for 48 h. Bacterial strain SAB06 was identified as Bacillus licheniformis (MT250345) based on biochemical, morphological, and molecular characteristics. Further studies are required to evaluate and optimize the purification and characterization of these enzymes before they can be recommended for industrial or environmental applications.

Culture of Endothelial Cells by Transfection with Plasmid Harboring Vascular Endothelial Growth Factor

  • Chang, Sungjaae;Sohn, Insook;Park, Inchul;Sohn, Youngsook;Hong, Seokil;Choe, Teaboo
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제5권2호
    • /
    • pp.106-109
    • /
    • 2000
  • Vascular endothelial cells (EGs) are usually difficult to culture to culture in a large scale because of their complicated requirements for cell growth. As the vascular endothelial growth factor (VEGF) is a key growth factor in the EC culture, we transfected human umbilical vein endothelial cells (HUVEC) using a plasmid containing VEGF gene and let them grow in a culture medium eliminated an important supplement, endothelail cell growth supplement(ECGS). The expression of VEGF by HUVEC tansfected with Vegf GENE was not enough to stimulate the growth of HUVEC, only 40% of maximum cell density obtainable in the presence of ECGS. However, when the culture medium was supplied with 2.5 ng/ml of basic fibroblast growth factor (bFGF), a synergistic effect effect of VEGE and bFGF was observed. In this case, the final cell density was recovered was recovered up to about 78% of maxium value.

  • PDF

미생물제재를 이용한 혐기성소화조 바이오가스 생산 극대화와 실증화에 관한 연구 (Study on maximization and demonstration of biogas production in an anaerobic digester using a microbial agent)

  • 배상대
    • 문화기술의 융합
    • /
    • 제4권2호
    • /
    • pp.179-183
    • /
    • 2018
  • 요즘 음식물쓰레기를 혐기성소화조에서 바이오가스와 유기성 퇴비를 생산하고자 하는 연구가 늘어나고 있다. 본 연구에서는 음식물쓰레기를 미생물제재로 발효시켜 바이오가스와 퇴비를 생산하기 위한 기초실험을 행하였다. 먼저, 각종 미생물을 조합하여 미생물재제를 개발하고, 이를 음식물쓰레기 Batch실험에서 발생하는 바이오가스 발생량을 확인하였다. 또한 실증플랜트에서 바이오가스 발생량과 퇴비화를 통해 혐기성소화조 바이오가스 생산 극대화와 실증화를 확인하였다.

매실(Prunus mume) 착즙액이 항균성과 생면의 저장성에 미치는 영향 (Effect of Maesil(Prunus mume) Juice on Antimicrobial Activity and Shelf-Life of Wet Noodle)

  • 이현애;남은숙;박신인
    • 한국식생활문화학회지
    • /
    • 제18권5호
    • /
    • pp.428-436
    • /
    • 2003
  • The effect of addition with maesil(Prunus mume) juice for extending the shelf-life of wet noodle was investigated by measuring quality changes such as total microbial count and pH. The Prunus mume juice showed antimicrobial activities against Salmonella enteritidis, Staphylococcus aureus, Bacillus cereus, Listeria monocytogenes, and Escherichia coli. When the wet noodles containing Prunus mume juice were kept at $4^{\circ}C$ for 20 days, it was showed that the drop of pH was not significantly occurred during the storage. Total microbial counts for control exceeded the initial putrefactive criterion level of $1.0{\times}10^6\;cfu/g$ at 16 days of storage at $4^{\circ}C$. However, total microbial count of wet noodles with the addition of 10%, 20% and 30% Prunus mume juice were $3.0{\times}10^2\;cfu/g,\;3.0{\times}10^2\;cfu/g,\;and\;1.5{\times}10^2\;cfu/g$, respectively, and these bacterial counts were still less than the criterion level ever at 20 days of storage. The addition of Prunus mume juice extended the shelf-life of wet noodle appreciably.

Aminopeptidase M 저해제인 Valistatin과 des-Asp$^4$-Amastatin을 생산하는 방선균 SL20209의 특성 및 동정 (Characterization and Identification of Streptomyces SL20209 Producing Valistatin and des-Asp$^4$-Amastatin, Two Inhibitors of Aminopeptidase M.)

  • 고학룡;전효곤;정명철;서현효;김홍중;박용하;고영희
    • 한국미생물·생명공학회지
    • /
    • 제24권1호
    • /
    • pp.1-8
    • /
    • 1996
  • Characterization and numerical identification were carried out for an actinomycetes SL20209. Morphological, cultural and physiological perperties of SL20209 which porduced valistatin and des-$asp^4$-amastatin as inhibitors of aminopeptidase M were evaluated. The isolate was identified to be the genus of Streptomyces. Fourty-three taxonomic units were analysed by using a TAXON program. The isolate was classified into the major cluster 29 of Streptomyces and best-matched to Streptomyces griseoplanus.

  • PDF

가축의 보조사료 개발을 위한 Bacillus spp.의 분리 및 특성 (Isolation and characterization of a Bacillus spp. for manufacturing the feed additives in livestock)

  • 박해석;조승화;임은정;김윤순;문성현;조호성;김현영;조용식;조성호
    • 미생물학회지
    • /
    • 제51권4호
    • /
    • pp.419-426
    • /
    • 2015
  • 가축산업분야에서 항생제의 사용이 금지됨에 따라, 질병 예방을 통한 축산농가의 생산성 향상을 위해 사료첨가제인 미생물제재의 개발과 같은 예방적 수단이 필요하게 되었다. 본 연구는 가축의 생산성을 높이기 위해 사료 분해 능력이 좋고 항균활성이 뛰어난 포자 형성 Bacillus 균주 3종인 B. sutilis LCB7, B. licheniformis SHS14, B. amyloliquefaciens LCB10을 우수 균주로 선발하였다. 최종적으로 선발한 Bacillus 3종을 1:1:1 비율로 혼합하여 혼합 종균을 제조하여 항균시험(in vitro) 결과, 단일 3종 및 lincomycin과 비교하여 유사한 활성을 보여주었으며, 송아지를 이용하여 항균활성 시험(in vivo)을 실시한 결과에서도 lincomycin 투여 대비 90% 수준의 높은 활성을 보여주었다. 개발한 혼합 종균의 안정적 보존을 위해 혼합 종균을 제조하여 다시 증균을 통하여 미생물군집 분석을 통하여 확인한 결과, 초기 군집비율과 증균 후 군집비율이 매우 유사하게 유지되었다. 이로서 본 연구에서는 선발된 Bacillus 균주 3종을 이용하여 제조한 혼합 종균이 사료첨가제용 미생물제재로서 이용 가능함을 최종 확인하였다.

유전자변형 작물이 토양 미생물상에 미치는 영향 (The Effects of Genetically Modified Crops on Soil Microbial Community)

  • 이기종;오성덕;손수인;류태훈;박종석;이장용;조현석;안병옥
    • 한국환경농학회지
    • /
    • 제31권2호
    • /
    • pp.192-199
    • /
    • 2012
  • 유전자변형 작물을 종자로 판매하거나 식품, 사료 혹은 가공용으로 이용하기 위해서는 반드시 관련 기관의 승인을 받아야 한다. 관련부처에서는 유전자변형 작물의 승인에 앞서 환경위해성 평가 자료가 과학적으로 타당한지 검토한다. 환경위해성 평가 중 유전자변형 작물이 토양 미생물 군집에 미치는 영향은 충분히 연구되지 못한 분야이다. 최근 토양 환경내 미생물 군집의 특성을 연구하기 위한 발전된 방법들이 개발되고 있다. 배양에 의존적인 또는 비의존적인 기술에 의한 토양 미생물의 군집 특성을 조사한 연구와 유전자변형 작물의 환경위해성 평가 적용 가능성을 고찰하였다. 유전자변형 작물의 토양미생물 영향 평가는 사안별 평가 원칙에 의해 이루어져야 한다. 신뢰할 수 있고 상세한 토양 미생물 평가가 이루어지기 위해서는 다양한 분석 방법의 조합이 필요하다.

신규 분리된 Mychonastes sp.의 생장, 지방산 및 색소 생산에 생장배지가 미치는 영향 (Effect of Culture Media on Production of Biomass, Fatty Acid, and Carotenoid in a Newly Isolated Mychonastes sp.)

  • 임경준;장현진;박예지;남승원;황병수;정지영;이창수;김지훈
    • 한국해양바이오학회지
    • /
    • 제14권1호
    • /
    • pp.1-8
    • /
    • 2022
  • This study examined the growth, fatty acid (FA) content, and carotenoids of a newly isolated freshwater microalga, Mychonastes sp. 246, in various culture media. The appropriate temperature and light intensity for culturing Mychonastes sp. 246 were determined as 18℃-22℃ and 200-250 µmol/m2/s using a high throughput photobioreactor. The microalgal cells were cultivated in 0.5 L bubble column photobioreactors using BG11, Bold's Basal media, and f/2 media. According to the growth results of the microalgae, BG11, among the tested media, showed the highest biomass concentrations (3.5 ± 0.1 g/L in 10 d). To enhance the biomass growth of the microalgae, the N:P ratio in BG11 was manipulated from 45:1 to 7:1 based on the stoichiometric cell composition. The biomass concentrations of Mychonastes sp. 246 grown on the manipulated BG11 (MBG) increased to 38% (4.6 ± 0.3 g/L in d) compared with the original BG11 (3.3 g/L). The FA content of the microalgae grown on the MBG was lower (8.4%) than that of the original BG11 (10.1%) while the FA compositions did not exhibit any significant differences. Furthermore, three kinds of carotenoids were identified in Mychonastes sp. 246, zeaxanthin, lutein, and β-carotene. These results suggest an effective strategy for increasing biomass concentrations, FA content, and carotenoids of microalgae by performing a simple N:P adjustment in the culture media.