• Title/Summary/Keyword: Microbial activities

Search Result 845, Processing Time 0.033 seconds

Antioxidant Activities of Water or Methanol Extract from Cherry (Prunus yedoensis) and Its Utilization to the Pork Patties (버찌(Prunus yedoensis) 추출물의 항산화 활성 평가 및 돈육 패티에 이용)

  • Choi, Pil Soo;Kim, Hyeong Sang;Chin, Koo Bok
    • Food Science of Animal Resources
    • /
    • v.33 no.2
    • /
    • pp.268-275
    • /
    • 2013
  • This study was performed to investigate the antioxidant activity of cherry added into meat products. Water and methanol were used to extract the antioxidant compounds from cherry. Total phenolic compounds of the methanol and water extract of cherry were 2.17 g/100 g and 2.77 g/100 g, respectively. The 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity of methanol extract showed similar activities to those with ascorbic acid at all concentrations (from 0.1% to 2.0%). Especially, water extract of cherry showed similar activity to those of ascorbic acid (AA), and methanol extract, when 2% of cherry extract was added. The reducing power of cherry was not comparable to those with AA, however no differences in reducing power were observed between the water and methanol extract. The iron chelating ability of cherry was observed in the range of 17.8-94.0% at both water and methanol extracts. An increased iron chelating ability was observed with increased concentration up to 2%. Iron chelating ability for water extract of cherry tended to be lower than those with methanol extract. After pork patties were manufactured with methanol extract of cherry at 0.5 and 1.0%, physicochemical properties, lipid oxidation and microbial changes of patties were measured. The addition of methanol extract of cherry reduced pH, brightness, redness, yellowness and thiobarbituric acid reactive substance (TBARS). During 14 d of storage, pH, TBARS and microbial counts were increased, while redness and yellowness values were decreased. Since the addition of methanol extract of cherry lowered TBARS during storage, it could be used as a natural antioxidant in meat products.

Effects of Replacing Rice Straw with By-products of Medical Herbs on the in vitro Fermentation Characteristics (한약재 부산물의 대체 수준이 in vitro 발효특성에 미치는 영향)

  • Lee, Shin-Ja;Shin, Nyeon-Hak;An, Jung-Jun;Chu, Gyo-Moon;Moon, Yea-Hwang;Lee, Sung-Sill
    • Journal of agriculture & life science
    • /
    • v.45 no.3
    • /
    • pp.69-79
    • /
    • 2011
  • This study was conducted to estimate effects of by-products of medical herbs replacing rice straw on in vitro fermentation characteristics. Each trial was composed of five treatments including medical herbs : rice straw (%) = 20 : 80 (T1), 40 : 60 (T2), 50 : 50 (T3), 100 : 0 (T4) and the control. Each treatment had eight fermentation times (3, 6, 9, 12, 24, 36, 48 and 72 hours) with three replications. The gas production and DM degradation were significantly (P<0.05) increased by supplementation, especially T4, during the whole fermentation periods. Methane production increased along with addition of by-products similar to the gas production and DM degradation. The pH values ranged from 5.39 to 6.80 and were significantly (P<0.05) decreased by supplementation of by-products of medical herbs. Microbial growth rates reached the peak at between 36 and 48h, thereafter tended to decrease. Although there were no significant differences in the enzyme activities, there was a tendency of increase in T4 treatment. From above results, the replacement levels, particularly 100% replacement of rice straw by by-products of medical herbs, resulted in improving the in vitro fermentation characteristics such as increasing gas production, microbial growth and DM degradation. Also it may help digestion by increasing enzyme activities.

Efficacy and Safety Evaluation of an Air Sterilizer Equipped With an Electrolytic Salt Catalyst for the Removal of Indoor Microbial Pollutants (염촉매 전기분해 공기살균기의 효능 평가)

  • Sun Nyoung Yu;Ho-Yeon Jeon;Bu Kyung Kim;Ae-Li Kim;Kyung Il Jung;Gye Rok Jeon;Soon Cheol Ahn
    • Journal of Life Science
    • /
    • v.34 no.7
    • /
    • pp.500-508
    • /
    • 2024
  • Recently, there has been increasing interest in enhancing the indoor air quality, particularly in response to the growing utilization of public facilities. The focus of this study was on assessing the efficacy and safety of an air sterilizer equipped with electrolytic salt catalysts. To that end, we evaluated the antimicrobial activity of the vapor spraying from the air sterilizer and its cytotoxicity in condensed form on human cell lines (HaCaT, BEAS-2B, and THP-1). Against the test organisms, which comprised five bacterial strains (Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa, Salmonella typhimurium) and one fungal strain (Candida albicans), the air sterilizer exhibited relatively high antimicrobial activities ranging from 10.89 to 73.98% following 1 and 3 hr of vapor spraying, which were notably time-dependent. Importantly, cytotoxicity assessments on human cells indicated no significant harmful effect even at a 1.0% concentration. Comprehensive safety evaluations included morphological observations, gene expression (Bcl-2, Bax) tests, and FACS analysis of intracellular ROS levels. Consistent with previous cytotoxicity findings, these estimates demonstrated no significant changes, highlighting the air sterilizer's safety and antimicrobial activities. In a simulated 20-hr operation within an indoor environment, the air sterilizer not only showed an 89.4% removal of total bacteria but also a 100.0% removal of Escherichia sp. and fungi. This research outlines the potential of the developed electrolytic salt catalyst air sterilizer to effectively remove indoor microbial pollutants without compromising human safety, underscoring the solution that it offers for improving indoor air quality.

Fermentation Characteristics of Low Salted Kochujang Prepared with Mixture of Sub-materials (부원료를 혼합 첨가한 저식염 고추장의 발효 특성)

  • Kim, Dong-Han
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.3
    • /
    • pp.449-455
    • /
    • 2005
  • To reduce saft content of kochujang, various combinations of sub-materials such as ethanol mustard and chitosan were added to kochujang, and their effects on microbial characteristics, enzyme activities, and physicochemical characteristics of kochujang were investigated after 12 weeks of fermentation. Activities of ${\beta}$-amylase and pretense were low in ethanol-mustard-chitosan-added kochujang, whereas no significant difference was observed in ${\alpha$-amylase activity among all groups. Number of viable yeast cells decreased remarkably in mustard-added kochujang during late aging period, and anaerobic bacterial counts decreased in sub-material-added groups. Consistency of kochujang increased by addition of sub-materials, and oxidation-reduction potential was low in chitosan-added group. Mustard-chitosan-added kochujang showed lowest increase in total color difference(${\Dalta}E$) and decrease in water activity. PH of kochujang wns highest in mustard-chitosan-added kochujang, resulting in significantly increased titratable acidity. Addition of sub-material increased reducing sugar contents of kochujang, whereas ethanol production was significantly repressed in mustard-chitosan-added kochujang. Amino nitrogen content was Highest in mustard-chitosan-added kochujang during late aging period, whereas ammonia nitrogen content was lower in ethanol-mustard-added kochujang. Results of sensory evaluation indicated ethanol-mustard-added kochujang was more acceptable than other groups in taste and overall acceptability.

Isolation, Root Colonization and Evaluation of Some Plant Growth-promoting Rhizobacteria in Paddy Rice

  • Kang, Ui-Gum;Park, Hyang-Mi;Ko, Jee-Yeon;Lee, Jae-Saeng;Jeon, Weon-Tai;Park, Chang-Young;Park, Ki-Do;Chebotar, Vladimir K.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.3
    • /
    • pp.135-149
    • /
    • 2017
  • In order to obtain promising rice growth-promoting microbial strains that can be used as substitutes for chemical fertilizers, 172 bacterial strains were isolated from rice roots grown in Korean and Russian soils. Out of them, the strains KR076, KR083, KR181 and RRj228 showed plant growth-promoting activities on maize seedlings. Bacillus megaterium KR076 and Bacillus sp. KR083 showed both nitrogen-fixing and plant growth-promoting activities, while Rhizobium sp. KR181 and Pseudomonas sp. RRj228 appeared to support only plant growth-promotion, but not $N_2$ fixation. Especially, RRj228 showed high growth promoting activity at low concentrations. Inoculation studies with KR083 and RRj228 revealed a high affinity to the Japonica rice variety such as Junambyeo than the Korean Tongil type variety such as Arumbyeo. Both KR083 and RRj228 strains showed rhizoplane and/or endophytic colonization in Japonica and Tongil types rice when soaked with the bacterial suspension of $1.1{\times}10^5cfu\;ml^{-1}$ for six and twelve hours. However, the total bacterial cell numbers were higher in the roots of Japonica variety than in the Tongil type. In inoculation trials with Daesanbyeo rice variety, the seedlings inoculated with KR181 and RRj228 at the rate of $2.0{\times}10^6cfu\;ml^{-1}$ showed yield increment of 35% and 33% (p < 0.01), respectively, so that they contributed to the replacement of chemical fertilizer at half doses of N, $P_2O_5$, and $K_2O$ in pots. In Junambyeo rice seedlings, the strain RRj228, when inoculated with a cell suspension of $1.8{\times}10^6cfu\;ml^{-1}$, promoted 3.4% higher yield at 70% dose than at a full dose level of N $110kg\;ha^{-1}$ in field. These results suggest that the rhizobacteria KR181 and RRj228 are prospective strains for enhancing rice performance.

Structure-activity Analysis of Benzylideneacetone for Effective Control of Plant Pests (벤질리덴아세톤 화학구조 변이에 따른 생리활성 변화 분석 및 식물 병해충 방제 효과)

  • Seo, Sam-Yeol;Jun, Mi-Hyun;Chun, Won-Su;Lee, Sung-Hong;Seo, Ji-Ae;Yi, Young-Keun;Hong, Yong-Pyo;Kim, Yong-Gyun
    • Korean journal of applied entomology
    • /
    • v.50 no.2
    • /
    • pp.107-113
    • /
    • 2011
  • Benzylideneacetone (BZA) is a compound derived from culture broth of an entomopathogenic bacterium, Xenorhabdus nematophila (Xn). Its immunosuppressive activity is caused by its inhibitory activity against eicosanoid biosynthesis. This BZA is being developed as an additive to enhance control efficacy of other commercial microbial insecticides. This study was focused on the enhancement of the immunosuppressive activity of BZA by generating its chemical derivatives toward decrease of its hydrophobicity. Two hydroxylated BZA and one sugar-conjugated BZA were chemically synthesized. All derivatives had the inhibitory activities of BZA against phospholipase $A_2$ ($PLA_2$) and phenoloxidase (PO) of the diamondback moth, Plutella xylostella, but BZA was the most potent. Mixtures of any BZA derivative with Bacillus thuringiensis (Bt) significantly increased pathogenicity of Bt. BZA also inhibited colony growth of four plant pathogenic fungi. However, BZA derivatives (especially the sugar-conjugated BZA) lost the antifungal activity. These results indicated that BZA and its derivatives inhibited catalytic activities of two immune-associated enzymes ($PLA_2$ and PO) of P. xylostella and enhanced Bt pathogenicity. We suggest its use to control plant pathogenic fungi.

Nitrate Uptake by Soil Microorganism, Bacillus sp. GS2 (토양미생물 Bacillus sp. GS2에 의한 질산이온 흡수)

  • Wang, Hee-Sung;Yoon, Young-Bae;Kim, Young-Kee
    • Journal of Applied Biological Chemistry
    • /
    • v.54 no.2
    • /
    • pp.79-83
    • /
    • 2011
  • Over-application of nitrogen fertilizer keeps increasing the salinity in the soils of greenhouse in domestic agriculture. In order to remove the excess amounts of soil nitrate, soil microorganisms which have high capacity of nitrate uptake were isolated from the upland soils and their nitrate uptake activities were measured. Strain GS2 was able to remove 50 mM nitrate within 12 h. After sequence comparison analysis of 16S rRNA gene, the strain was identified and named as Bacillus sp. GS2. When the growth and nitrate uptake activities were measured, maximal values were obtained at $30-40^{\circ}C$ and $37^{\circ}C$, respectively; however, both were optimal at pH 6-8. In the media containing 50 mM nitrate, Bacillus sp. GS2 removed 43 mM nitrate which is corresponding to 86% removal. Similar amounts of nitrate removal were observed at the nitrate concentrations up to 300 mM, showing a saturation in nitrate uptake at concentrations above 50 mM. These results imply that Bacillus sp. GS2 can be a good candidate for the microbial remediation of accumulated environmental nitrate because of its excellent growth and nitrate uptake activity.

The Effect of Antibacteria and Antioxidantion Activities from Needle Leaf Tree (침엽수 추출물의 항균.항산화 효과)

  • Zhoh, Choon-Koo;Kim, Kyung-Rae;Kim, Joo-Chan
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.33 no.4
    • /
    • pp.269-273
    • /
    • 2007
  • We studied anti-microbial and anti-oxidant activities of bio-active components in stem of Juniperus chinensis L. and leaf of Abies koreana Wilson. Those plants of needle leaf tree family were reported to contain anti-cancer compounds. The anti-bacterial activity was tested by Broth dilution method against Escherichia coli and Staphylococcus aureus. As results, Juniperus chinensis L. and Abies koreana Wilson extracts showed 17.0% and 8.5% higher anti-bacterial activity than methyl paraben, respectively. The free radical scavenging activity of Juniperus chinensis L. and Abies koreana Wilson extracts showed 45 % and 44 % at 5,000 ppm. We measured polyphenol (catechin equivalent) and flavonoids quantity. The Juniperus chinensis L. extract contained 312 mg/g of polyphenol and 105 mg/g of flavonoids. The Abies koreana Wilson extract contained 280 mg/g of polyphenol and 103.8 mg/g of flavonoids. The cytotoxicity of extracts was measured by neutral red assay. Extracts did not affect the viability of CCK-986sk cells up to a concentration of 1,250 ppm. In conclusion, these data suggest that extracts of needle leaf trees would be usefull as antiseptic agents and anti-oxidants for cosmetic products.

Hexachlorobenzene Dechlorination Ability of Microbes from Canal and Estuary Sediments

  • Anotai, Jin;Voranisarakul, J.;Wantichapichat, W.;Chen, I.M.
    • Journal of Wetlands Research
    • /
    • v.9 no.1
    • /
    • pp.107-114
    • /
    • 2007
  • This study aimed to investigate the hexachlorobenzene (HCB) dechlorinating ability of sediment microbes collected from a natural canal receiving secondary effluents from an industrial estate and nearby factories. Nine sites along the stream and one in the estuary in the Gulf of Thailand into which the canal spills were specified and sampling for sediment and water. Preliminary analysis of the sediments showed that the first four sites nearest to the discharging location were contaminated by HCB within the range of 0.18 to 1.25 ppm. Apart from that, 1,3,5-trichlorobenzene which has never been commercially produced or used in any manufacturing processes except for the transformation from higher chlorinated benzene was also identified in the range of 0.16 to 0.24 ppm. This suggested a possibility of sporadically HCB contamination in this stream. Of more important, people in the community along this canal earn their living by coastal fishery; hence, posing a risk of spreading HCB and its less chlorinated congeners via food chain from caught marine creatures to human. As a result, there is an urgent need to understand the behavior of HCB dechlorination in this stream sediment which can lead to a clean-up action in the future. Serum bottles with sediment slurries (sediment to water ratio of 1:1 (v/v) and filtered to remove particles larger than 0.7 mm) from each site were inoculated with 2 mg/l of HCB, kept anaerobically in the dark at room temperature without any nourishment, and analyzed for HCB and its less-chlorinated congeners every 6 days. Total chemical oxygen demand, suspended solids, and volatile suspended solids were in the range of 21,492-73,584, 158,100-518,100 and 6,000-32,700 mg/l, respectively. It was found that all sediment slurries began to dechlorinate HCB in 12 to 30 days and the HCB was completely removed within 42 to 60 days or so. On the other hand, there was no HCB dechlorination occurred in the controlled set which was sterilized by autoclaving prior to the addition of HCB. This implies that the HCB transformation was solely due to microorganisms' activities. HCB was dechlorinated principally via pentachlolobenzene to 1,2,3,5-tetrachlorobenzene and terminated at 1,3,5-trichlorobenzene which is the major pathway as reported by many researchers. Dichlorobenzene has not been detected in any samples within the dechlorination period of 60 days. The results indicate that the microbial matrix in the sediment of this stream has an outstanding capability to dechlorinate HCB. Existing substrates and nutrients which mainly sorbed onto the solid phase and the typical temperature in Thailand were sufficient and suitable to promote the activities of these HCB-dechlorinating microbes.

  • PDF

Anti-microbial Activities of Ten Lauraceae Species against Propionibacterium acnes (여드름 유발균 Propionibacterium acnes에 대한 녹나무과 10종의 항균활성)

  • Cho, Ju Sung;Chi, Lai Won;Jang, Bo Kook;Jeong, Heon Sang;Lee, Cheol Hee
    • Korean Journal of Plant Resources
    • /
    • v.31 no.5
    • /
    • pp.423-432
    • /
    • 2018
  • This study was performed to develop a new natural antimicrobial materials by analyzing the effect of extracts obtained from Ten Lauraceae Species on the inhibitory activity against Propionibacterium acnes. The plant materials were collected from Wando and Jeju islands, and the antimicrobial activity of the crude extracts was examined by the agar diffusion method with different part (i.e., leaf and branch), solvents (i.e., distilled water, 80% ethanol, and 100% methanol) and at different ultrasonic extracting times (i.e., 15, 30, and 45 minutes). The control agents used were synthetic antimicrobials, methylparaben and phenoxyethanol, at concentrations of 0.4, 1, 2, and 4 mg/disc. Altogether, extracts of 10 species used in the study showed inhibitory activity, which confirmed their antimicrobial action against acnes. Among these, leaves of Laurus nobilis L. which was extracted in 80% ethanol for 45 min showed the largest clear zone (19.8 mm). Leaves of L. nobilis L., showing highest antimicrobial activities among 10 species, were successively reextracted with n-hexane, chloroform, ethylacetate and n-butanol. As a results, in all fractions except butanol, clear zone above 10 mm were formed. The ethyl acetate fraction showed the highest inhibitory activity (13.3 mm) and the inhibitory activity was significantly higher than that of crude extract (10.2 mm) and phenoxyethanol as a control (12.5 mm).