한약재 부산물의 대체 수준이 in vitro 발효특성에 미치는 영향

Effects of Replacing Rice Straw with By-products of Medical Herbs on the in vitro Fermentation Characteristics

  • 이신자 (경상대학교 응용생명과학부(BK 21) & 농업생명과학연구원) ;
  • 신년학 (경상대학교 응용생명과학부(BK 21) & 농업생명과학연구원) ;
  • 안정준 (경상대학교 응용생명과학부(BK 21) & 농업생명과학연구원) ;
  • 추교문 (경남과학기술대학교 양돈과학기술센터) ;
  • 문여황 (경남과학기술대학교 동물생명과학과) ;
  • 이성실 (경상대학교 응용생명과학부(BK 21) & 농업생명과학연구원)
  • Lee, Shin-Ja (Div. of Appl. Life Sci.(BK 21 Program), Gyeongsang National Univ(Insti. of Agric. Life Sci.)) ;
  • Shin, Nyeon-Hak (Div. of Appl. Life Sci.(BK 21 Program), Gyeongsang National Univ(Insti. of Agric. Life Sci.)) ;
  • An, Jung-Jun (Div. of Appl. Life Sci.(BK 21 Program), Gyeongsang National Univ(Insti. of Agric. Life Sci.)) ;
  • Chu, Gyo-Moon (Swine Sci. Techn. Center, Gyeongnam National Univ. of Sci. and Techn.) ;
  • Moon, Yea-Hwang (Dept. of Animal Sci. Biotechn, Gyeongnam National Univ. of Sci. and Techn.) ;
  • Lee, Sung-Sill (Div. of Appl. Life Sci.(BK 21 Program), Gyeongsang National Univ(Insti. of Agric. Life Sci.))
  • 투고 : 2011.03.10
  • 심사 : 2011.06.23
  • 발행 : 2011.06.30

초록

본 연구는 한약재 부산물을 조사료 대체 사료원으로서 사용하였을 때 발효기간에 따른 in vitro 발효 특성을 조사하고자 수행되었다. 처리구는 대조구 (control), 한약재 부산물 20%와 볏짚 80% (T1), 한약재 부산물 40%와 볏짚 60% (T2), 한약재 부산물 50%와 볏짚 50% (T3), 그리고 한약재 부산물 100%와 볏짚 0% (T4)이었으며 3, 6, 9, 12, 24, 36, 48, 및 72h 동안 처리당 3반복으로 in vitro 발효실험을 실시하였다. 가스 발생량과 건물소화율은 시간이 지남에 따라, 그리고 한약재 부산물의 양이 많아짐에 따라서 증가하는 경향이었으며, 특히 72시간에 T4가 가장 높았다 (P<0.05). 메탄 발생량 또한 비슷한 결과로서 시간이 경과하고 한약재 부산물의 양이 많아짐에 따라 지속적으로 증가하였다 (P<0.05). pH는 5.39~6.80의 범위로 첨가량이 높아질 수록 유의적으로 낮아졌다 (P<0.05). 미생물 성장량은 발효 후 시간이 경과함에 따라서 점차적으로 증가하였고, 첨가구가 control 보다 높았다 (P<0.05). CMCase, Xylanase 및 amylase 효소 활력은 처리구별 특정한 패턴이나 유의적인 차이가 없었다. 본 실험의 결과는 한약재 부산물이 가스발생량, 미생물성장량 및 건물소화율을 높이고 pH를 감소시키는 등의 효과를 주어 반추위 발효의 안정화 및 향상을 꾀할 수 있고, 효소 활력을 높임으로써 사료의 이용효율을 향상시킬 수 있다는 가능성을 보여 주었다.

This study was conducted to estimate effects of by-products of medical herbs replacing rice straw on in vitro fermentation characteristics. Each trial was composed of five treatments including medical herbs : rice straw (%) = 20 : 80 (T1), 40 : 60 (T2), 50 : 50 (T3), 100 : 0 (T4) and the control. Each treatment had eight fermentation times (3, 6, 9, 12, 24, 36, 48 and 72 hours) with three replications. The gas production and DM degradation were significantly (P<0.05) increased by supplementation, especially T4, during the whole fermentation periods. Methane production increased along with addition of by-products similar to the gas production and DM degradation. The pH values ranged from 5.39 to 6.80 and were significantly (P<0.05) decreased by supplementation of by-products of medical herbs. Microbial growth rates reached the peak at between 36 and 48h, thereafter tended to decrease. Although there were no significant differences in the enzyme activities, there was a tendency of increase in T4 treatment. From above results, the replacement levels, particularly 100% replacement of rice straw by by-products of medical herbs, resulted in improving the in vitro fermentation characteristics such as increasing gas production, microbial growth and DM degradation. Also it may help digestion by increasing enzyme activities.

키워드

과제정보

연구 과제 주관 기관 : (재)산청한방약초연구소

참고문헌

  1. A.O.A.C. 1995. Offical methods of analysis 16th edition. Association of official analytical chemists, Washington, D. C.
  2. Akin, D. E. and W. S. Borneman. 1990. Role of rumen fungi in fibre degradation. J. Dairy Sci. 73: 3023-3032. https://doi.org/10.3168/jds.S0022-0302(90)78989-8
  3. Blaxter, K. 1989. Energy Metabolism in Animals and Man. p. 123. Cambridge University Press, Cambridge, UK.
  4. Bryant, M. P. and L. A. Burkey. 1953. Cultural methods and some characteristics of some of the more numerous groups of bacteria in the bovine rumen. J. Dairy Sci. 36: 205-217. https://doi.org/10.3168/jds.S0022-0302(53)91482-9
  5. Choi, J. H., D. W. Kim, Y. S. Moon and D. S. Chang. 1996. Feeding effect of oriental medicine on the functional properties of pig meat. J. Korean Soc. Food Nutr. 25: 110-117.
  6. Czerkawski, J. W., K. L. Blaxter, and F. W. Wainman. 1966. The metabolism of oleic, linoleic and linolenic acids by sheep with reference to their effects on methane production. Br. J. Nutr. 20: 349-362. https://doi.org/10.1079/BJN19660035
  7. Dahiya, J, P., D. C. Wilkie., A. G. Van Kessel and M. D. Drew. 2006. Potential strategies for controlling necrotic enteritis in broiler chickens in post-antibiotic era. Anim. Feed Sci. Technol. 129: 60-68. https://doi.org/10.1016/j.anifeedsci.2005.12.003
  8. Dehority. B. A. and H. W. Scott. 1967. Extent of cellulose and hemicellulose digestion in various forage by pure cultures of rumen bacteria. J. Dairy Sci. 50: 1136-1141. https://doi.org/10.3168/jds.S0022-0302(67)87579-9
  9. Demeyer, D. I. and C. J. Van Nevel. 1975. Methanogenesis, an intergrated part of carbohydrate fermentation, and its control. In: Digestion and metabolism in the ruminant. McDonald, I. W. and A. C. I. Warner. pp. 366-382. eds. The University of New England Publishing Unit. Armidale, N.S.W. Australia.
  10. Devendra, C. 1982. Perspectives in the utilization of untreated rice straw by ruminants in Asia. In the utilization of fibrous agricultural residues as animal feeds. Australia, (Ed. P.T. Doyle), p. 7.
  11. Duncan, D. B. 1955. Multiple range and multiple F tests. Biometrics. 11: 1. https://doi.org/10.2307/3001478
  12. Fedorak P. M. and S. E. Hrwdey. 1983. A simple apparatus for measuring gas production by methanogenic cultures in serum bottles. Environ. Technol. Lett. 4: 425. https://doi.org/10.1080/09593338309384228
  13. Fischer. E. 1884. Influence of configuration on the action of enzymes. Chem. Ber. 27: 2985-2993.
  14. Goel, G., H. P. S. Makkar, and K. Becker. 2009. Inhibition of methanogens by bromochloromethane: effects on microbial communities and rumen fermentation using batch and continuous fermentations. Br. J. Nutr. 101: 1484-1492. https://doi.org/10.1017/S0007114508076198
  15. Ha. J. K., S. S. Lee, Y, S. Moon, and C. H. Kim. 2005. Ruminant nutrition and physiology. Seoul National University press. Seoul. Korea.
  16. Hart, K. J., D. R. Yanez-ruiz, S. M. Duval, N. R. McEwan, and C. J. Newbold. 2008. Plant extracts to manipulate rumen fermentation. Anim. Feed Sci. Tech. 147: 8-35. https://doi.org/10.1016/j.anifeedsci.2007.09.007
  17. Holter, J. B. and A. B. Yong. 1992. Method production is dry and lactating Holstein(CVS). J. Dairy Sci. 75: 2165-2175. https://doi.org/10.3168/jds.S0022-0302(92)77976-4
  18. Jackson, M. G. 1977. The Alkali Treatment of Straws. Animal Feed Sci. Techn. 24: 105-130.
  19. Johnson, D. E., T. M. Hill, and B. R. Carmean. 1991. New perspectives on ruminant methane emission. In: Energy Metabolism of Farm Animals. pp. 376-379. ETH. Zurich. Switzer land.
  20. Johnson, K. A. and D. E Johnson. 1995. Methane emissions from cattle. J. Anim. Sci. 73: 2483-2492. https://doi.org/10.2527/1995.7382483x
  21. Kim, S. U., J. Y. Jung, S. G. Park, and S. S. Jo. 2008. Effects of feeding medicinal herbs on growth performance and carcass quality in finishing pig. Korean J. Vet. Serv. 31: 555-566.
  22. Korean Feeding Standard for Han Woo(KRC). 2007
  23. Martin, S. A. 1998. Manipulation of ruminal fermentation with organic acids: a review. J. Anim. Sci. 76: 3123-3132. https://doi.org/10.2527/1998.76123123x
  24. Miller, G. L., R. Blum, W, E. Giennon, and A. L. Burton. 1960. Measurement of carboxymethylcellulase activity. Anal. Biochem. 1: 127-132. https://doi.org/10.1016/0003-2697(60)90004-X
  25. Moe, P. W. and H. F. Tyrrell. 1979. Methane production in dairy cows. J. Dairy Sci. 62: 1583- 1586. https://doi.org/10.3168/jds.S0022-0302(79)83465-7
  26. Moore, J. E. 1970. Procedure for two-stage in vitro digestion of forage. In L. E. Harrison(ed.). Nutrition research technique for domestic and wild animals. J. Brit. Grassl. Sci. 18: 119.
  27. Mould, F. L., E. R. Orskov, and S. O. Mann, 1984. Associative effects of mixed feeds. I. effects of type and level of supplementation and the influence of the rumen fluid pH on cellulolysis in vivo and dry matter digestion of various roughages. Anim. Feed Sci. Technol. 10: 15.
  28. National Research Council(NRC). 2000.
  29. Newbold, C. J., B. Lassalas, and J. P. Jouany. 1995. The importance of methanogenesis associated with ciliate protozoa in ruminal methane production in vitro. Lett. Appl. Microbiol. 21: 230-234. https://doi.org/10.1111/j.1472-765X.1995.tb01048.x
  30. Orth, A. B., M. Denny, and M. Tien. 1991. Overproduciton of lignin degrading enzymes by an isolate of phanerochaete chrysosporium. Appl. Environ. Microbiol. 57: 2591-2596.
  31. Park, J. H. and Y. H. Song. 1997. Nutritive values of Korean medical herb residue as dietary supplements for broiler chicks. Kor. J. Nutr. Feed. 21: 59-64.
  32. Park, S. J. and S. O. Yoo. 1999. Effects of supplemention of Chinese medicine refuse on performance and physiology in broiler chicks. Kor. J. Poult. Sci. 26: 195-201
  33. Pen, B., Sar, C., B. Mwenya, M. Kuwaki, R. Morikawa, and J. Takahashi. 2006. Effects of Yucca schidigera and Quillaja saponaria extracts on in vitro ruminal fermentation and methane emission. Anim. Feed Sci. Tech. 129: 175-186. https://doi.org/10.1016/j.anifeedsci.2006.01.002
  34. SAS. 1996. SAS/STAT software for PC. Release 8.01. SAS institute Inc., Cary, N.C., U.S.A.
  35. Shibata, M., F. Terada, K. Iwasaki, M. Kurihara, and T. Nishida. 1992. Methane production in heifers, sheep and goats consuming diets of various hayconcentrate ratios. Anim. Sci. Technol. Japan, 3: 1221-1227.
  36. Van Nevel, C. J. and D. I. Demeyer. 1995. Feed additives and other interventions for decreasing methane emissions. In: Biotechnology in animal feeds and animal feeding. R. J. Wallace and A. Chesson. pp. 329-349. eds. VCH Publishers. New York. USA.
  37. Van Soest, P. J. 1994. Nutritional Ecology of the Ruminant (2nd ed). Cornell University Press, Ithaca, NY.
  38. Van Soest, P. J., J. B. Robertson, and B. A. Lewis. 1991. Methods for fiber, neutral detergent fiber, and non starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74: 3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
  39. Woo, M. J., K. T. Lee, and C. J. Kim. 1995. Quality characteristics of emulsion-type sausage manufactured with cottonseed oil. Korean J. Food Sci. Ani. Resour. 15: 187-191.
  40. Zhang, C. M., Y. Q. Guoa, Z. P. Yuan, Y. M. Wu, J. K. Wang, J. X. Liu, and W. Y. Zhub. 2008. Effect of octadeca carbon fatty acids on microbial fermentation, methanogenesis and microbial flora in vitro. Anim. Feed Sci. Tech. 146: 259-269. https://doi.org/10.1016/j.anifeedsci.2008.01.005