• Title/Summary/Keyword: Microbial Fuel Cell

Search Result 131, Processing Time 0.035 seconds

Enhancing Factors of Electricity Generation in a Microbial Fuel Cell Using Geobacter sulfurreducens

  • Kim, Mi-Sun;Cha, Jaehwan;Kim, Dong-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.10
    • /
    • pp.1395-1400
    • /
    • 2012
  • In this study, we investigated various cultural and operational factors to enhance electricity generation in a microbial fuel cell (MFC) using Geobacter sulfurreducens. The pure culture of G. sulfurreducens was cultivated using various substrates including acetate, malate, succinate, and butyrate, with fumarate as an electron acceptor. Cell growth was observed only in acetate-fed medium, when the cell concentrations increased 4-fold for 3 days. A high acetate concentration suppressed electricity generation. As the acetate concentration was increased from 5 to 20 mM, the power density dropped from 16 to $13mW/m^2$, whereas the coulombic efficiency (CE) declined by about half. The immobilization of G. sulfurreducens on the anode considerably reduced the enrichment period from 15 to 7 days. Using argon gas to create an anaerobic condition in the anode chamber led to increased pH, and electricity generation subsequently dropped. When the plain carbon paper cathode was replaced by Pt-coated carbon paper (0.5 mg $Pt/cm^2$), the CE increased greatly from 39% to 83%.

Basic Study for Harvesting Unused Energy based on Plant-Microbial Electrochemical Technology (식물-미생물전기화학 기반의 미활용 에너지 회수 기초 연구)

  • Yu, Jaecheul;Shin, Choon Hwan
    • Journal of Environmental Science International
    • /
    • v.28 no.2
    • /
    • pp.219-224
    • /
    • 2019
  • In this study, we evaluated the energy production from plant-microbial fuel cells using representative indoor plants, such as Scindapsus aureus and Clatha minor. The maximum power density of microbial fuel cell (MFC) using S. aureus ($3.36mW/m^2$) was about 2 times higher than that of the MFC using C. minor ($1.43mW/m^2$). It was confirmed that energy recovery is possible using plant-MFCs without fuel. However, further research is needed to improve the performance of plant-MFCs. Nevertheless, plant-MFCs have proved their potential as a novel energy source to overcome the limitations of the conventional renewable energy sources such as wind power and solar cells, and could be employed to a power source for the sensor in charge of the fourth industrial revolution.

Identification of Internal Resistance of Microbial Fuel Cell by Electrochemical Technique and Its Effect on Voltage Change and Organic Matter Reduction Associated with Power Management System (전기화학적 기법에 의한 미생물연료전지 내부저항 특성 파악 및 전력관리시스템 연계 전압 변화와 유기물 저감에 미치는 영향)

  • Jang, Jae Kyung;Park, Hyemin;Kim, Taeyoung;Yang, Yoonseok;Yeo, Jeongjin;Kang, Sukwon;Paek, Yee;Kwon, Jin Kyung
    • Journal of Biomedical Engineering Research
    • /
    • v.39 no.5
    • /
    • pp.220-228
    • /
    • 2018
  • The internal resistance of microbial fuel cell (MFC) using stainless steel skein for oxidizing electrode was investigated and the factors affecting the voltage generation were identified. We also investigated the effect of power management system (PMS) on the usability for MFC and the removal efficiency of organic pollutants. The performance of a stack microbial fuel cell connected with (PMS) or PMS+LED was analyzed by the voltage generation and organic matter reduction. The maximum power density of the unit cells was found to be $5.82W/m^3$ at $200{\Omega}$. The maximum current density was $47.53A/m^3$ without power overshoot even under $1{\Omega}$. The ohmic resistance ($R_s$) and the charge transfer resistance ($R_{ct}$) of the oxidation electrode using stainless steel skein electrode, were $0.56{\Omega}$ and $0.02{\Omega}$, respectively. However, the sum of internal resistance for reduction electrode using graphite felts loaded Pt/C catalyst was $6.64{\Omega}$. Also, in order to understand the internal resistance, the current interruption method was used by changing the external resistance as $50{\Omega}$, $300{\Omega}$, $5k{\Omega}$. It has been shown that the ohm resistance ($R_s$) decreased with the external resistance. In the case of a series-connected microbial fuel cell, the reversal phenomenon occurred even though two cells having the similar performance. However, the output of the PMS constantly remained for 20 hours even when voltage reversal occurred. Also the removal ability of organic pollutants (SCOD) was not reduced. As a result of this study, it was found that buffering effect for a certain period of time when the voltage reversal occurred during the operation of the microbial fuel cell did not have a serious effect on the energy loss or the operation of the microbial fuel cell.

Effects of anode surface area and methylene blue dye treatment on the power density of microbial fuel cell with sponge and carbon nano tube electrode (음극 전극 표면적과 메틸렌블루 염색이 스펀지 탄소나노 튜브 전극 미생물 연료전지의 전력수율에 미치는 영향)

  • Lee, Chae-Young;Park, Su-Hee;Song, Young-Chae;Woo, Jung-Hui;Yoo, Kyu-Seon;Chung, Jae-Woo;Han, Sun-Kee
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.6
    • /
    • pp.883-888
    • /
    • 2012
  • Anode electrode is one of the most important factors in microbial fuel cell (MFC). This study was conducted to investigate the effects of mediator as methylene blue (MB) and electrode surface area on the power density of MFC with sponge and carbon nano tube (CNT) electrode (SC). The SC electrode with MB (MC) showed the maximum power density increased from 74.0 $mW/m^2$ to 143.1 $mW/m^2$. The grid shaped sponge and CNT (GSC) electrode showed the maximum power density of 209.2 $mW/m^2$ due to the increase of surface area from 88.0 to 152.0 $cm^2$. The GSC electrode with MB (GMC) revealed the maximum power density of 384.9 $mW/m^2$ which was 5.2 times higher than that obtained from the MFC with SC. Therefore MB and increase of surface area led to enhance the performance of microbial fuel cell such as power density.

Polypyrrole-Coated Reticulated Vitreous Carbon as Anode in Microbial Fuel Cell for Higher Energy Output

  • Yuan, Yong;Kim, Sung-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.1
    • /
    • pp.168-172
    • /
    • 2008
  • A microbial fuel cell is a noble green technology generating electricity from biomass and is expected to find applications in a real world. One of main hurdles to this purpose is the low power density. In this study, we constructed a prototype microbial fuel cell using Proteus vulgaris to study the effect of various reaction conditions on the performance. Main focus has been made on the modification of the anode with electropolymerized polypyrrole (Ppy). A dramatic power enhancement was resulted from the Ppy deposition onto the reticulated vitreous carbon (RVC) electrode. Our obtained maximum power density of 1.2 mW cm-3 is the highest value among the reported ones for the similar system. Further power enhancement was possible by increasing the ionic strength of the solution to decrease internal resistance of the cell. Other variables such as the deposition time, kinds of mediators, and amount of bacteria have also been examined.

A Microbial Fuel Cell Type Lactate Biosensor Using a Metal-Reducing Bacterium, Shewanella putrefaciens

  • KIM, HYUNG JOO;MOON SIK HYUN;IN SEOP CHANG;BYUNG HONG KIM
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.3
    • /
    • pp.365-367
    • /
    • 1999
  • A fuel cell type biosensor for lactate was developed using a metal-reducing bacterium, Shewanella putrefaciens IR-1. Under the operational conditions, the bacterial cell suspension generated the current without an electrochemical mediator in the presence of lactate. The current was proportional to the lactate concentration up to 30 mM.

  • PDF

Characteristics of Electricity Production by Metallic and Non-metallic Anodes Immersed in Mud Sediment Using Sediment Microbial Fuel Cell

  • Haque, Niamul;Cho, Dae-Chul;Kwon, Sung-Hyun
    • Journal of Environmental Science International
    • /
    • v.23 no.10
    • /
    • pp.1745-1753
    • /
    • 2014
  • Sediment microbial fuel cell (SMFC), equipped with Zn, Al, Cu, Fe or graphite felt (GF) anode and marine sediment, was performed. Graphite felt was used as a common cathode. SMFC was single chambered and did not use any redox mediator. The aim of this work was to find efficient anodic material. Oxidation reduction potential (ORP), cell voltage, current density, power density, pH and chemical oxygen demand (COD) were measured for SMFC's performance.. The order of maximum power density was $913mWm^{-2}$ for Zn, $646mWm^{-2}$ for Fe, $387.8mWm^{-2}$ for Cu, $266mWm^{-2}$ for Al, and $127mWm^{-2}$ for graphite felt (GF). The current density over voltage was found to be strongly correlated with metal electrodes, but the graphite felt electrode, in which relatively weaker electricity was observed because of its bio-oriented mechanism. Metal corrosion reactions and/or a complicated microbial electron transfer mechanism acting around the anodic compartment may facilitate to generate electricity. We presume that more sophisticated selection of anodic material can lead to better performance in SMFC.

The Structure Improvement of Microbial Fuel Cell to Generate Electricity from swine wastewater (가축분뇨를 이용하는 미생물연료전지 개발을 위한 구조개선)

  • Jang, Jaekyung;Sun, RyouYoung;Lee, SungHyoun;Kim, JongGoo;Kang, YounKoo;Kim, Young Hwa
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.252.1-252.1
    • /
    • 2010
  • These studies convert to useful electricity from swine wastewater and to treat this wastewater. In order to operate the microbial fuel cell(MFC) for the swine wastewater, the anode volume of MFCs was scaled up with 5L in the vacant condition. Graphite felts and low-priced mesh stainless-less as electrode had mixed up and packed into the anode compartment. The meshed stainless-less electrode could also be acted the collector of electron produced by microorganisms in anode. For a cathode compartment, graphite felt loaded Pt/C catalyst was used. Graphite felt electrode embedded in the anode compartment was punched holds at regular intervals to prevent occurred the channeling phenomenon. The sources of seeding on microbial fuel cell was used a mixture of swine wastewater and anaerobic digestion sludge(1:1). It was enriched within 6 days. Swine wastewater was fed with 53.26 ml/min flow rate. The MFCs produced a current of about 17 mA stably used swine wastewater with $3,167{\pm}80mg/L$. The maximum power density and current density was 680 $mW/m^3$ and 3,770 $mA/m^3$, respectively. From these results it is showed that treatment of swine wastewater synchronizes with electricity generation using modified low priced microbial fuel cell.

  • PDF