DOI QR코드

DOI QR Code

Effects of anode surface area and methylene blue dye treatment on the power density of microbial fuel cell with sponge and carbon nano tube electrode

음극 전극 표면적과 메틸렌블루 염색이 스펀지 탄소나노 튜브 전극 미생물 연료전지의 전력수율에 미치는 영향

  • 이채영 (수원대학교 토목공학과) ;
  • 박수희 (수원대학교 토목공학과) ;
  • 송영채 (한국해양대학교 환경공학과) ;
  • 우정희 (한국해양대학교 환경공학과) ;
  • 유규선 (전주대학교 토목환경공학과) ;
  • 정재우 (경남과학기술대학교 환경공학과) ;
  • 한선기 (한국방송통신대학교 환경보건학과)
  • Received : 2012.11.18
  • Accepted : 2012.12.10
  • Published : 2012.12.15

Abstract

Anode electrode is one of the most important factors in microbial fuel cell (MFC). This study was conducted to investigate the effects of mediator as methylene blue (MB) and electrode surface area on the power density of MFC with sponge and carbon nano tube (CNT) electrode (SC). The SC electrode with MB (MC) showed the maximum power density increased from 74.0 $mW/m^2$ to 143.1 $mW/m^2$. The grid shaped sponge and CNT (GSC) electrode showed the maximum power density of 209.2 $mW/m^2$ due to the increase of surface area from 88.0 to 152.0 $cm^2$. The GSC electrode with MB (GMC) revealed the maximum power density of 384.9 $mW/m^2$ which was 5.2 times higher than that obtained from the MFC with SC. Therefore MB and increase of surface area led to enhance the performance of microbial fuel cell such as power density.

Keywords

References

  1. Mun H. S., and Jang I. S., (2009) Internal resistances in microbial fuel cell and techniques for analysis of internal resistance, Journal of Korean Society of Environmental Engineers, 31(8), pp. 585-592.
  2. Allen, R. M., and Bennetto, H. P., (1993) Microbial fuel cells: electricity production from carbohydrates, Applied Biochemistry and Biotechnology, 39(2), pp. 27-40.
  3. Davis, F., and Higson, S. P. (2007) Biofuel cells-recent advances and applications, Biosensors and Bioelectronics, 22(7), pp. 1224-1235. https://doi.org/10.1016/j.bios.2006.04.029
  4. Du, Z., Li, H., and Gu, T. (2007) A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy, Biotechnology advances, 25(5), pp. 464-482. https://doi.org/10.1016/j.biotechadv.2007.05.004
  5. Ieropoulos, I., Greenman, J., Melhuish, C., and Hart, J. (2005) Comparative study of three types of microbial fuel cell, Enzyme and Microbial Technology, 37(2), pp. 238-245. https://doi.org/10.1016/j.enzmictec.2005.03.006
  6. Ieropoulos, I., Winfield, J., and Greenman, J. (2010) Effects of flow-rate, inoculum and time on the internal resistance of microbial fuel cells, Bioresource Technology, 101(10), pp. 3520-3525. https://doi.org/10.1016/j.biortech.2009.12.108
  7. Kim, B. H., Kim, H. J., Hyun, M. S., and Park, D. H. (1999) Direct electrode reaction of Fe(III)-reducing bacterium, Shewanella putrefaciens, Journal of Microbiology and Biotechnology, 9(2), pp. 127-131.
  8. Logan, B. E. (2010) Scaling up microbial fuel cells and other bioelectrochemical systems, Applied microbiology and biotechnology, 85(6), pp. 1665-1671. https://doi.org/10.1007/s00253-009-2378-9
  9. Lorenzo , M. D., Scott, K., Curtis, T. P., and Head, I. M. (2010) Effect of increasing anode surface area on the performance of a single chamber microbial fuel cell, Chemical Engineering Journal, 156(1), pp. 40-48. https://doi.org/10.1016/j.cej.2009.09.031
  10. Morris, J. M., Jin, S., Wang, J., Zhu, C., and Urynowicz, M. A. (2007) Lead dioxide as an alternative catalyst to platinum in microbial fuel cells, Electrochemistry Communications, 9(7), pp. 1730-1734. https://doi.org/10.1016/j.elecom.2007.03.028
  11. Park, D. H., and Zeikus, J. G. (2000) Electricity generation in microbial fuel cells using neutral red as an electronophore, Applied and Environmental Microbiology, 66(4), pp. 1292-1297. https://doi.org/10.1128/AEM.66.4.1292-1297.2000
  12. Rahimnejad, M., Najafpour, G. D., Ghoreyshi, A. A., Shakeri, M., and Zare, H. (2011) Methylene blue as electron promoters in microbial fuel cell, International Journal of Hydrogen Energy, 36(20), pp. 13335-13341. https://doi.org/10.1016/j.ijhydene.2011.07.059
  13. Rismani -Yazdi, H., Carver, S. M., Christy, A. D., and Tuovinen, O. H. (2008) Cathodic Limitations in microbial fuel cells: An Overview, Journal of Power Sources, 180(2), pp. 638-694.
  14. Sharma, Y., and Li, B. (2010) Optimizing energy harvest in wastewater treatment by combining anaerobic hydrogen producing biofermentor(HPB) and microbial fuel cell(MFC), International Journal of Hydrogen Energy, 35(8), pp. 3789-3797. https://doi.org/10.1016/j.ijhydene.2010.01.042

Cited by

  1. Surface Modification of a Graphite Fiber Fabric Anode for Enhanced Bioelectrochemical Methane Production vol.30, pp.8, 2016, https://doi.org/10.1021/acs.energyfuels.6b00959