Browse > Article
http://dx.doi.org/10.4014/jmb.1204.04010

Enhancing Factors of Electricity Generation in a Microbial Fuel Cell Using Geobacter sulfurreducens  

Kim, Mi-Sun (Clean Fuel Research Center, Korea Institute of Energy Research)
Cha, Jaehwan (Clean Fuel Research Center, Korea Institute of Energy Research)
Kim, Dong-Hoon (Clean Fuel Research Center, Korea Institute of Energy Research)
Publication Information
Journal of Microbiology and Biotechnology / v.22, no.10, 2012 , pp. 1395-1400 More about this Journal
Abstract
In this study, we investigated various cultural and operational factors to enhance electricity generation in a microbial fuel cell (MFC) using Geobacter sulfurreducens. The pure culture of G. sulfurreducens was cultivated using various substrates including acetate, malate, succinate, and butyrate, with fumarate as an electron acceptor. Cell growth was observed only in acetate-fed medium, when the cell concentrations increased 4-fold for 3 days. A high acetate concentration suppressed electricity generation. As the acetate concentration was increased from 5 to 20 mM, the power density dropped from 16 to $13mW/m^2$, whereas the coulombic efficiency (CE) declined by about half. The immobilization of G. sulfurreducens on the anode considerably reduced the enrichment period from 15 to 7 days. Using argon gas to create an anaerobic condition in the anode chamber led to increased pH, and electricity generation subsequently dropped. When the plain carbon paper cathode was replaced by Pt-coated carbon paper (0.5 mg $Pt/cm^2$), the CE increased greatly from 39% to 83%.
Keywords
Microbial fuel cell; Geobacter sulfurreducens; electricity generation; coulombic efficiency; substrate specificity; immobilization;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Myers, C. R. and J. M. Myers. 1992. Localization of cytochromes to the outer membrane of anaerobically grown Shewanella putrefaciens MR-1. J. Bacteriol. 174: 3429-3438.
2 Nimje, V. R., C. Y. Chen, C. C. Chen, J. Y. Tsai, H. R. Chen, Y. M. Huang, et al. 2011. Microbial fuel cell of Enterobacter cloacae: Effect of anodic pH microenvironment on current, power density, internal resistance and electrochemical losses. Int. J. Hydrogen Energy 36: 11093-11101.   DOI   ScienceOn
3 Rabaey, K., N. Boon, M. Hofte, and W. Verstraete. 2005. Microbial phenazine production enhances electron transfer in biofuel cells. Environ. Sci. Technol. 39: 3401-3408.   DOI   ScienceOn
4 Reguera, G., K. D. McCarthy, T. Mehta, J. S. Nicoll, M. T. Tuominen, and D. R. Lovley. 2005. Extracellular electron transfer via microbial nanowires. Nature 435: 1098-1101.   DOI   ScienceOn
5 Rismani-Yazdi, H., S. M. Carver, A. D. Christy, and A. H. Tuovinen. 2008. Cathodic limitations in microbial fuel cells: An overview. J. Power Sources 180: 683-694.   DOI   ScienceOn
6 Sharma, Y. and B. Li. 2010. The variation of power generation with organic substrates in single-chamber microbial fuel cells (SCMFCs). Bioresour. Technol. 101: 1844-1850.   DOI   ScienceOn
7 Veer Raghavulu, S., S. Venkata Mohan, M. Venkateswar Reddy, G. Mohanakrishna, and P. N. Sarma. 2009. Behavior of single chambered mediatorless microbial fuel cell (MFC) at acidophilic, neutral and alkaline microenvironments during chemical wastewater treatment. Int. J. Hydrogen Energy 34: 7547-7554.   DOI   ScienceOn
8 Zhuang, L., S. Zhou, Y. Li, and Y. Yuan. 2010. Enhanced performance of air-cathode two-chamber microbial fuel cells with high-pH anode and low-pH cathode. Bioresour. Technol. 101: 3514-3519.   DOI   ScienceOn
9 Biffinger, J. C., J. Pietron, R. Ray, B. Little, and B. R. Ringeisen. 2007. A biofilm enhanced miniature microbial fuel cell using Shewanella oneidensis DSP10 and oxygen reduction cathodes. Biosens. Bioelectron. 22: 1672-1679.   DOI   ScienceOn
10 Bond, D. R., D. E. Holmes, L. M. Tender, and D. R. Lovley. 2002. Electrode-reducing microorganisms that harvest energy from marine sediments. Science 295: 483-485.   DOI   ScienceOn
11 Chang, I. S., H. S. Moon, O. Bretschger, J. K. Jang, H. I. Park, K. H. Nealson, and B. H. Kim. 2006. Electrochemically active bacteria (EAB) and mediator-less microbial fuel cell. J. Microbiol. Biotechnol. 16: 163-177.
12 Bond, D. R. and D. R. Lovley. 2003. Electricity production by Geobacter sulfurreducens attached to electrodes. Appl. Environ. Microbiol. 69: 1548-1555.   DOI   ScienceOn
13 Cha, J., S. Choi, H. Yu, H. Kim, and C. Kim. 2010. Directly applicable microbial fuel cells in aeration tank for wastewater treatment. Bioelectrochemistry 78: 72-79.   DOI   ScienceOn
14 Chaudhuri, S. K. and D. R. Lovley. 2003. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat. Biotechnol. 21: 1229-1232.   DOI   ScienceOn
15 Debabov, V. G. 2008. Electricity from microorganisms. Microbiology 77: 123-131.   DOI   ScienceOn
16 Du, Z., H. Li, and T. Gu. 2007. A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy. Biotechnol. Adv. 25: 464-482.   DOI   ScienceOn
17 Gil, G. C., I. S. Chang, B. H. Kim, M. Kim, J. K. Jang, H. S. Park, and H. J. Kim. 2003. Operational parameters affecting the performance of a mediator-less microbial fuel cell. Biosens. Bioelectron. 18: 327-334.   DOI   ScienceOn
18 Kieft, T. L., J. K. Fredrickson, T. C. Onstott, Y. A. Gorby, H. M. Kostandarithes, T. J. Bailey, et al. 1999. Dissimilatory reduction of Fe(III) and other electron acceptors by a Thermus isolate. Appl. Environ. Microbiol. 65: 1214-1221.
19 Kim, B. H., H. J. Kim, M. S. Hyun, and D. H. Park. 1999. Direct electrode reaction of an Fe(III)-reducing bacterium, Shewanella putrefaciens. J. Microbiol. Biotechnol. 9: 127-131.
20 Kim, M. S. and Y. J. Lee. 2010. Optimization of culture conditions and electricity generation using Geobacter sulfurreducens in a dual-chambered microbial fuel cell. Int. J. Hydrogen Energy 35: 13028-13034.   DOI   ScienceOn
21 Kim, H. J., H. S. Park, M. S. Hyun, I. S. Chang, M. Kim, and B. H. Kim. 2002. A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzyme Microb. Technol. 30: 145-152.   DOI   ScienceOn
22 Logan, B. E. 2008. Microbial Fuel Cells. John Wiley & Sons, New York, NY, USA.
23 Methe, B. A., K. E. Nelson, J. A. Eisen, I. T. Paulsen, W. Nelson, J. F. Heidelberg, et al. 2003. Genome of Geobacter sulfurreducens: Metal reduction in subsurface environments. Science 302: 1967-1969.   DOI   ScienceOn
24 Min, B., S. Cheng, and B. E. Logan. 2005. Electricity generation using membrane and salt bridge microbial fuel cells. Wat. Res. 39: 1675-1686.   DOI   ScienceOn
25 Aelterman, P., S. Freguia, J. Keller, W. Verstraete, and K. Rabaey. 2008. The anode potential regulates bacterial activity in microbial fuel cells. Appl. Microbiol. Biotechnol. 78: 409-418.   DOI   ScienceOn
26 Bennetto, H. P. 1990. Electricity generation by microorganisms. Biotechnol. Edu. 1: 163-168.