• 제목/요약/키워드: Microbial Enzymatic Activity

검색결과 72건 처리시간 0.026초

A Continuous Spectrophotometric Assay for NADPH-cytochrome P450 Reductase Activity Using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium Bromide

  • Yim, Sung-Kun;Yun, Chul-Ho;Ahn, Tae-Ho;Jung, Heung-Chae;Pan, Jae-Gu
    • BMB Reports
    • /
    • 제38권3호
    • /
    • pp.366-369
    • /
    • 2005
  • NADPH-cytochrome P450 reductase (CPR) transfers electrons from NADPH to cytochrome P450 and also catalyzes the one-electron reduction of many drugs and foreign compounds. Various spectrophotometric assays have been performed to examine electron-accepting properties of CPR and its ability to reduce cytochrome $b_5$, cytochrome c, and ferricyanide. In this report, reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) by CPR has been assessed as a method for monitoring CPR activity. The principle advantage of this substance is that the reduction of MTT can be assayed directly in the reaction medium by a continuous spectrophotometric method. The electrons released from NADPH by CPR were transferred to MTT. MTT reduction activity was then assessed spectrophotometrically by measuring the increase of $A_{610}$. MTT reduction followed classical Michaelis-Menten kinetics ($K_m\;=\;20\;{\mu}M$, $k_{cat}\;=\;1,910\;min^{-1}$). This method offers the advantages of a commercially available substrate and short analysis time by a simple measurement of enzymatic activity of CPR.

탈지 들깨박 효소분해물의 제조와 Leuconostoc mesenteroides 배양에의 활용 (Preparation of enzymatic hydrolysate from defatted perilla seed residue and its application to Leuconostoc mesenteroides cultivation)

  • 신영섭;이태정;인만진;김동청
    • Journal of Applied Biological Chemistry
    • /
    • 제64권1호
    • /
    • pp.97-102
    • /
    • 2021
  • 본 연구에서는 들깨(Perilla frutescens)박으로부터 효소분해물을 제조하기 위한 효소를 선별하여 최적의 반응조건을 확립하였다. Alcalase와 Ceremix의 동시 처리가 들깨박의 단백질과 탄수화물의 가용화에 효과적이었으며, 효소 사용량은 들깨박 중량의 2% (w/w), pH는 7.0, 반응 시간은 2시간이 적당하였다. 최적의 반응조건에서 들깨박을 Alcalase와 Ceremix로 처리한 결과 환원당, 가용성 단백질 및 총 폴리페놀 함량이 크게 증가하였다. 유리 라디칼과 양이온 라디칼에 대한 소거활성으로 확인한 결과 들깨박 효소분해물의 항산화 활성은 대조군에 비해 우수하였다. 또한 젖산균인 Leuconostoc mesenteroides 310-12 균주를 들깨박 효소분해물에서 배양한 결과 대조군에 비해 생육과 산의 생성이 우수하였다. 결론적으로 들깨박 효소분해물은 항산화 생리활성 소재로서뿐만 아니라 유산균 배양 배지로서도 활용 가능성이 있음을 확인하였다.

Production of L-DOPA by Thermostable Tyrosine Phenol-lyase of a Thermophilic Symbiobacterium Species Overexpressed in Recombinant Escherichia coli

  • Lee, Seung-Goo;Ro, Hyeon-Su;Hong, Seung-Pyo;Kim, Eun-Hwa;Sung, Moon-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • 제6권2호
    • /
    • pp.98-102
    • /
    • 1996
  • A thermostable tyrosine phenol-lyase gene of a thermophilic Symbiobacterium species was cloned and overexpressed in Escherichia coli in order to produce the biocatalyst for the synthesis of 3, 4-dihy-droxyphenyl-L-alanine (L-DOPA). The substrates used for the synthetic reaction were pyrocatechol, so-dium pyruvate, and ammonium chloride. The enzyme was stable up to $60^{\circ}C$, and the optimal temperature for the synthesis of L-DOPA was $37^{\circ}C$ . The optimal pH of the reaction was about 8.3. Enzyme activity was highly dependent on the amount of ammonium chloride and the optimal concentration was estimated to be 0.6 M. In the case of pyrocatechol, an inactivation of enzyme activity was observed at con-centrations higher than 0.1 M. Enzyme activity was increased by the presence of ethanol. Under op-timized conditions, L-DOPA production was carried out adding pyrocatechol and sodium pyruvate to the reaction solution intermittently to avoid substrate depletion during the reaction. The concentration of L-DOPA reached 29.8 g/l after 6 h, but the concentration didn t increase further because of the formation of byproducts by a non-enzymatic reaction between L-DOPA and pyruvate.

  • PDF

Effects of Metal and Metalloid Contamination on Microbial Diversity and Activity in Agricultural Soils

  • Tipayno, Sherlyn C.;Chauhan, Puneet S.;Woo, Sung-Man;Hong, Bo-Hee;Park, Kee-Woong;Chung, Jong-Bae;Sa, Tong-Min
    • 한국토양비료학회지
    • /
    • 제44권1호
    • /
    • pp.146-159
    • /
    • 2011
  • The continuous increase in the production of metals and their subsequent release into the environment has lead to increased concentration of these elements in agricultural soils. Because microbes are involved in almost every chemical transformations taking place in the soil, considerable attention has been given to assessing their responses to metal contaminants. Short-term and long-term exposures to toxic metals have been shown to reduce microbial diversity, biomass and activities in the soil. Several studies show that microbial parameters like basal respiration, metabolic quotient, and enzymatic activities, including those of oxidoreductases and those involved in the cycle of C, N, P and other elements, exhibit sensitivity to soil metal concentrations. These have been therefore, regarded as good indices for assessing the impact of metal contaminants to the soil. Metal contamination has also been extensively shown to decrease species diversity and cause shifts in microbial community structure. Biochemical and molecular techniques that are currently being employed to detect these changes are continuously challenged by several limiting factors, although showing some degree of sensitivity and efficiency. Variations and inconsistencies in the responses of bioindicators to metal stress in the soil can also be explained by differences in bioavailability of the metal to the microorganisms. This, in turn, is influenced by soil characteristics such as CEC, pH, soil particles and other factors. Therefore, aside from selecting the appropriate techniques to better understand microbial responses to metals, it is also important to understand the prevalent environmental conditions that interplay to bring about observed changes in any given soil parameter.

Methylumbelliferyl 형광기질을 이용한 평판배지상의 미생물 체외 세포효소측정방법 (Microbial Extracellular Enzyme Detection on Agar Plates by Means of Fluorogenic Methylumbelliferyl-Substrates)

  • 김상진
    • 미생물학회지
    • /
    • 제28권3호
    • /
    • pp.229-235
    • /
    • 1990
  • 평판배지상 세균 colony의 체외 세포 효소활성을 직접 측정할 수 있는 신속하고 정확한 방법에 대하여 기술하였다. 일반적으로 세균의 효소 특성을 살피기 위해서는 단백질, 전분, chitin, tween-80 등과 같은 고분자 물질을 첨가한 선택배지를 사용하고 있으나 그 방법상 여러 가지 문제점이 있다 그러므로 본 연구에서는 형광물질의 일종인 Methvlumbell liferyl(MUF) 기질이 일반적으보 사용되고 있는 천연 고분자 물질고 유사한가를 순수분리세균 균주를 이용하여 실험으로 검증하였다. MUF 기질 분해원리에 기초를 둔 기술한 새로운 방법은 순수 분리 균주는 물론 colony 계수에 사용되는 평판배지상에서도 세균의 체외세포 효소 특성을 정량적으로 측정 가능하게 한다. 본 새로운 방법을 이용하여 담수 생태계와 해양 퇴적토내 종속영양세균의 체외 효소 활성을 측정하여 고찰하였다.

  • PDF

Antimicrobial Peptides (AMPs): Peptide Structure and Mode of Action

  • Park, Yoon-Kyung;Hahm, Kyung-Soo
    • BMB Reports
    • /
    • 제38권5호
    • /
    • pp.507-516
    • /
    • 2005
  • Antimicrobial peptides (AMPs) have been isolated and characterized from tissues and organisms representing virtually every kingdom and phylum. Their amino acid composition, amphipathicity, cationic charge, and size allow them to attach to and insert into membrane bilayers to form pores by 'barrel-stave', 'carpet' or 'toroidal-pore' mechanisms. Although these models are helpful for defining mechanisms of AMP activity, their relevance to resolving how peptides damage and kill microorganisms still needs to be clarified. Moreover, many AMPs employ sophisticated and dynamic mechanisms of action to carry out their likely roles in antimicrobial host defense. Recently, it has been speculated that transmembrane pore formation is not the only mechanism of microbial killing by AMPs. In fact, several observations suggest that translocated AMPs can alter cytoplasmic membrane septum formation, reduce cell-wall, nucleic acid, and protein synthesis, and inhibit enzymatic activity. In this review, we present the structures of several AMPs as well as models of how AMPs induce pore formation. AMPs have received special attention as a possible alternative way to combat antibiotic-resistant bacterial strains. It may be possible to design synthetic AMPs with enhanced activity for microbial cells, especially those with antibiotic resistance, as well as synergistic effects with conventional antibiotic agents that lack cytotoxic or hemolytic activity.

Effects of elevated CO2 on growth of Pinus densiflora seedling and enzyme activities in soil

  • Kim, Sung-Hyun;Jung, Soo-Hyun;Kang, Ho-Jung;Lee, In-Sook
    • Journal of Ecology and Environment
    • /
    • 제33권2호
    • /
    • pp.133-139
    • /
    • 2010
  • Atmospheric $CO_2$ concentrations have increased exponentially over the last century and, if continued, are expected to have significant effects on plants and soil. In this study, we investigated the effects of elevated $CO_2$ on the growth of Pinus densiflora seedling and microbial activity in soil. Three-year-old pine seedlings were exposed to ambient as well as elevated levels of $CO_2$ (380 and 760 ppmv, respectively). Growth rates and C:N ratios of the pine seedlings were also determined. Dissolved organic carbon content, phenolic compound content, and microbial activity were measured in bulk soil and rhizosphere soil. The results show that elevated $CO_2$ significantly increased the root dry weight of pine seedling. In addition, overall N content decreased, which increased the C:N ratio in pine needles. Elevated $CO_2$ decreased soil moisture, nitrate concentration, and the concentration of soil phenolic compounds. In contrast, soil enzymatic activities were increased in rhizosphere soil, including ${\beta}$-glucosidase, N-acetylglucosaminidase and phosphatase enzyme activities. In conclusion, elevated $CO_2$ concentrations caused distinct changes in soil chemistry and microbiology.

Efficacy of Sodium Hypochlorite and Acidified Sodium Chlorite in Preventing Browning and Microbial Growth on Fresh-Cut Produce

  • Sun, Shih-Hui;Kim, Su-Jin;Kwak, Soo-Jin;Yoon, Ki-Sun
    • Preventive Nutrition and Food Science
    • /
    • 제17권3호
    • /
    • pp.210-216
    • /
    • 2012
  • The use of suitable sanitizers can increase the quality of fresh-cut produce and reduce the risk of foodborne illnesses. The objective of this study was to compare the washing effects of 100 mg/L sodium hypochlorite (SH) and 500 mg/L acidified sodium chlorite (ASC) on the prevention of enzymatic browning and the growth of microbial populations, including aerobic plate counts, E. coli, and coliforms, throughout storage at $4^{\circ}C$ and $10^{\circ}C$. Fresh-cut zucchini, cucumbers, green bell peppers, and root vegetables such as potatoes, sweet potatoes, carrots, and radishes were used. Compared to SH washing, ASC washing significantly (p<0.05) reduced microbial contamination on the fresh-cut produce and prevented browning of fresh-cut potatoes and sweet potatoes during storage. More effective inhibition of aerobic plate counts and coliforms growth was observed on fresh-cut produce treated with ASC during storage at $10^{\circ}C$. Polyphenol oxidase (PPO) activity of fresh-cut potatoes and sweet potatoes was more effectively inhibited after washing with ASC. The use of 500 mg/L ASC can provide effective antimicrobial and anti-browning treatments of fresh-cut produce, including processed root vegetables.

Screening of Microorganisms Producing Esterase for the Production of $(R)-\beta-Acetylmercaptoisobutyric$ Acid from Methyl $(R,S)-\beta-Acetylmercaptoisobutyrate$

  • Gokul Boyapati;Lee Je-Hyuk;Song Ki-Bang;Panda T.;Rhee Sang-Ki;Kim Chul-Ho
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제5권1호
    • /
    • pp.57-60
    • /
    • 2000
  • $(R)-\beta-acetylmercaptoisobutyric$ acid (RAM), a chiral compound, is an important intermediate for the chemical synthesis of various antihypertensive and congestive heart failure drugs. Microorganisms capable of converting $(R,S)-\beta-acetylmercaptoisobutyric$ acid ((R,S)-ester) to RAM were screened from soil microorganisms. A strain of Pseudomonas sp. 1001 screened from a soil sample was selected to be the best. Cells showed an activity of 540 U/mL from culture broth and the enzyme was thermostable up to $70^{\circ}C$. This strain could produce RAM asymmetrically from (R,S)-ester.

  • PDF

전통 이화주의 양조와 관련된 미생물 및 효소적 특성 (Microbial and Enzymatic Properties Related to Brewing of Traditional Ewhaju)

  • 김정옥;김종군
    • 한국식품조리과학회지
    • /
    • 제9권4호
    • /
    • pp.266-271
    • /
    • 1993
  • 이화주의 전통적 배경을 조사하여 주품으로써의 위치를 채조명하며 전래된 리화주 양조방법을 현지답사, 확인하고 전통적인 방법으로 누룩을 만들어 리화주를 양조하여 누룩과 제조중인 리화주에 대하여 미생물 및 효소적 실험을 수행한 결과는 다음과 같다. 리화주 누룩의 미생물은 Aspergillus 와 oryzae와 Hanse-nula sp. 가 주종이었으며, 균수는 각각 1.2$\times$$10^6$ CHU/g 이었고 기타 미생물은 희석 배양에서도 생육되지 않았다. a-amylase 활성은 누룩이 30.7, 이화주는 담금 직후 19.3,숙성 100일에 21.2, 1년간 숙성된 것도 20.3이었으며, 0-amylase활성은 누룩이 34.4, 이화주 담금 직후 18.8, 숙성 100일에 19.8, 1년간 숙성된 것은 19.9이었다. 저장성에 있어서도 가열처리나 보존제의 첨가 없이 장기저장이 가능할 뿐 아니라 자장후에도 amylase의 활성도가 상당히 높아서 소화를 촉진할 수도 있는 저알코올성 전통주로서 개발 가치가 있다고 생각된다.

  • PDF