• 제목/요약/키워드: Microbial Community

검색결과 768건 처리시간 0.021초

암모니아 부분산화 공정의 제어와 미생물 군집의 변화 (Influence of FA and FNA to Microbial Community in Sequencing Batch Ammonium Partial Nitrification System)

  • 안조환
    • 한국물환경학회지
    • /
    • 제31권4호
    • /
    • pp.399-406
    • /
    • 2015
  • A sequencing batch reactor was operated under different pH conditions to see the influence of free ammonia (FA) and free nitrous acid (FNA) to microbial community on ammonium partial nitrification. Long-term influences of FA and FNA were evaluated by polymerase chain reaction-denaturing gradient gel electrophoresis and fluorescence in situ hybridization. Nitrite accumulation was successfully achieved at pH 8.2 and 6.3. The shifts in the microbial community were observed when influent ammonia concentration increased to 1 g $NH_4$-N/L at pH 8.2, and then when pH was dropped to 6.3. Both Nitrosomonas and Nitrosospira were selected during the startup of the reactor, and eventually became dominant members as ammonia-oxidizing bacteria. The results of molecular microbiological analysis strongly suggested that the composition of microbial community was changed according to the method used to control nitrite-oxidizing bacteria.

음식물류 폐기물의 수소발효시 탄수화물 농도변화에 따른 수소전환율 및 미생물군집 영향 (Hydrogen Yields and Microbial Community Impacts of Changes in Carbohydrate Concentration during Hydrogen Fermentation of Food Wastes)

  • 조경민;박혜숙
    • 신재생에너지
    • /
    • 제20권1호
    • /
    • pp.175-181
    • /
    • 2024
  • This study analyzed the hydrogen conversion rate and microbial community in conjunction with changes in carbohydrate concentration during hydrogen fermentation using food waste, and presented comprehensive research results for the condition 80 g Carbo COD/L, which showed the highest efficiency with a carbohydrate removal rate of 98.1% and a hydrogen conversion rate of 1.76 mol H2/mol. The microbial community analysis found that Clostridium sp., widely known as a hydrogen-producing microorganism, was released in 80 g Carbo COD/L and confirmed that it was a dominant species at 98.1%. Conversely, in 100 g Carbo. Under COD/L conditions, Leuconostoc sp. showed the maximun prevalence, which is believed to hinder hydrogen production.

Microbial Community Profiling in cis- and trans-Dichloroethene Enrichment Systems Using Denaturing Gradient Gel Electrophoresis

  • Olaniran, Ademola O.;Stafford, William H.L.;Cowan, Don A.;Pillay, Dorsamy;Pillay, Balakrishna
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권4호
    • /
    • pp.560-570
    • /
    • 2007
  • The effective and accurate assessment of the total microbial community diversity is one of the primary challenges in modem microbial ecology, especially for the detection and characterization of unculturable populations and populations with a low abundance. Accordingly, this study was undertaken to investigate the diversity of the microbial community during the biodegradation of cis- and trans-dichloroethenes in soil and wastewater enrichment cultures. Community profiling using PCR targeting the l6S rRNA gene and denaturing gradient gel electrophoresis (PCR-DGGE) revealed an alteration in the bacterial community profiles with time. Exposure to cis- and trans-dichloroethenes led to the disappearance of certain genospecies that were initially observed in the untreated samples. A cluster analysis of the bacterial DGGE community profiles at various sampling times during the degradation process indicated that the community profile became stable after day 10 of the enrichment. DNA sequencing and phylogenetic analysis of selected DGGE bands revealed that the genera Acinetobacter, Pseudomonas, Bacillus, Comamonas, and Arthrobacter, plus several other important uncultured bacterial phylotypes, dominated the enrichment cultures. Thus, the identified dominant phylotypes may play an important role in the degradation of cis- and trans-dichloroethenes.

고농도 염분폐수의 정화능이 우수한 기능성 미생물 커뮤니티의 군집 분석 (Microbial Community Analysis in the Wastewater Treatment of Hypersaline-Wastewater)

  • 이재원;김병혁;박용석;송영채;고성철
    • 한국미생물·생명공학회지
    • /
    • 제42권4호
    • /
    • pp.377-385
    • /
    • 2014
  • 본 연구에서는 고염폐수의 정화능이 우수한 미생물 기능성 커뮤니티 HWTC (Highsalt Wastewater Treatment Community)를 이용한 고염폐수 처리시스템을 개발하였으며, HWTC의 미생물 군집의 다양성을 확인해 보았다. HWTC의 고염폐수 처리능력은 HRT 2.5일만에 $COD_{cr}$ 84%의 처리효율로 확인하였다. 미생물 군집분석은 PCR-DGGE 기법과 16S rRNA gene clone library를 통하여 미생물 다양성을 확인하였다. 4%의 염농도의 폐수에서 우점하는 미생물은 Halomonas sp.와 Paenibacillus sp.로 나타났고, phylogenetic tree 분석을 통해 ${\gamma}$-proteobacteria 속하는 미생물의 다양성이 높게 나타났으며, firmicutes속 하는 미생물이 우점하고 있었다. 고염폐수를 처리할 수 있는 미생물 기능성 커뮤니티 HWTC를 이용하여, 고염의 폐수 정화를 가능하게 할 것으로 판단된다.

Impacts of Soil Organic Matter on Microbial Community of Paddy Soils in Gyeongnam Province

  • Son, Daniel;Sonn, Yeon-Kyu;Weon, Hang-Yeon;Heo, Jae-Young;Kim, Dae-Ho;Choi, Yong-Jo;Lee, Sang-Dae;Ok, Yong Sik;Lee, Young Han
    • 한국토양비료학회지
    • /
    • 제49권6호
    • /
    • pp.783-788
    • /
    • 2016
  • Agricultural management of paddy soil depends on the effects of soil microbial activities. The present study evaluated the soil microbial community of 25 paddy soils in Gyeongnam Province by fatty acid methyl ester (FAME). The average of microbial communities in paddy soils were 32.2% of total bacteria, 16.7% of Gram-negative bacteria, 12.9% of Gram-positive bacteria, 2.0% of actinomycetes, 14.9% of fungi, and 1.3% of arbuscular mycorrhizal fungi. The communities of total bacteria (34.9%) and Gram-negative bacteria (19.4%) in soils with $30{\sim}35g\;kg^{-1}$ of organic matter were significantly larger than those in soils with other organic matter levels. However, soils with $20{\sim}30g\;kg^{-1}$ of organic matter had significantly low ratio of cy17:0 to $16:1{\omega}7c$ and cy19:0 to $18:1{\omega}7c$ as compared with soils with $30{\sim}35g\;kg^{-1}$ of organic matter, indicating microbial stress decreased (p < 0.05). In principal component analyses of soil microbial communities, Gram-negative bacteria should be considered as a potential responsible factor for the obvious microbial community differentiation that was observed between the two different organic matter levels in paddy fields. Thus, soils containing $20{\sim}30g\;kg^{-1}$ of organic matter were responsible for strong effect on microbial biomass and stress in paddy fields.

Microbial Community Dynamics in Batch High-Solid Anaerobic Digestion of Food Waste Under Mesophilic Conditions

  • Yi, Jing;Dong, Bin;Xue, Yonggang;Li, Ning;Gao, Peng;Zhao, Yuxin;Dai, Lingling;Dai, Xiaohu
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권2호
    • /
    • pp.270-279
    • /
    • 2014
  • Microbial community shifts, associated with performance data, were investigated in an anaerobic batch digester treating high-solid food waste under mesophilic conditions using, a combination of molecular techniques and chemical analysis methods. The batch process was successfully operated with an organic removal efficiency of 44.5% associated with a biogas yield of 0.82 L/g $VS_{removal}$. Microbial community structures were examined by denaturing gel gradient electrophoresis. Clostridium and Symbiobacterium organisms were suggested to be mainly responsible for the organic matter catabolism in hydrolysis and acidogenesis reactions. The dynamics of archaeal and methanogenic populations were monitored using real-time PCR targeting 16S rRNA genes. Methanosarcina was the predominant methanogen, suggesting that the methanogenesis took place mainly via an aceticlastic pathway. Hydrogenotrophic methanogens were also supported in high-solid anaerobic digestion of food waste through syntrophism with syntrophic bacterium. Microbial community shifts showed good agreement with the performance parameters in anaerobic digestion, implying the possibility of diagnosing a high-solid anaerobic digestion process by monitoring microbial community shifts. On the other hand, the batch results could be relevant to the start-up period of a continuous system and could also provide useful information to set up a continuous operation.

Illumina를 이용한16S rRNA 기반 미생물생태분석에서 분변의 동결건조에 의한 인공적인 시퀀스 생성 감소효과 (Freeze-drying feces reduces illumina-derived artefacts on 16S rRNA-based microbial community analysis)

  • 김정만;운노타쯔야
    • Journal of Applied Biological Chemistry
    • /
    • 제59권4호
    • /
    • pp.299-304
    • /
    • 2016
  • PCR 산물을 이용한 시퀀싱방법 중 Illumina 플랫폼으로 시퀀싱을 수행하면 100개 이상의 인위적인 시퀀스가 생겨나며, 그러한 인위적으로 형성되는 시퀀스에 의해 Operational taxonomic units를 기반으로 한 미생물생태 변화 및 네트워크 분석에 영향을 미친다. 이러한 문제점이 있음에도 불구하고 분변미생물생태를 분석하는데 Illumina에서 제공하고 있는 시퀀싱을 주된 방법으로 사용하고 있으며, 또한 그러한 시퀀스 기반의 분변미생물 생태분석 결과는 분변샘플상태(i.e., 분변 보관 기간, 분변양, 분변의 신선도)에 따라 상이하게 나타난다. 본 연구에서는 분변샘플의 동결건조가 시퀀스 데이터의 퀄리티를 향상시키는지 관해 조사하였으며, 이를 통해 분변샘플에 동결건조처리는 전체적인 미생물생태구조를 변화시키지는 않지만 인위적으로 형성되었을 가능성이 있는 시퀀스의 수를 감소시키는 것으로 확인되었다. 따라서, 분변으로부터 DNA를 추출하기 이전에 동결건조처리하는 방법을 Illumina 기반의 분변미생물생태분석에 사용하는 것을 권장한다.

청계천 복원구간 내 분변오염도 평가와 미생물 군집 연구 (Assessment of Fecal Pollution and Bacterial Community Structure in Restored Section of Cheonggyecheon Stream)

  • 박영빈;이희태;김세윤;고광표
    • 한국물환경학회지
    • /
    • 제25권1호
    • /
    • pp.76-83
    • /
    • 2009
  • In 2005, the 5.84-Km length of Cheonggyecheon stream, previously covered with concrete road, was uncovered in the middle of Seoul, Korea. We investigated microbial water quality in various sites in Cheonggyecheon stream. We took water samples on three different days. The sampling sites included inflow water from upper stream (Mojeongyo), midstream (Ogansugyo), and downstream (Muhakgyo). Fecal pollution indicator microorganisms were measured by both IDEXX $Colilert^{(R)}$ and $Enterolert^{(R)}$. Microbial community from these sampling sites was also characterized based on 16S rRNA gene sequences. The average concentrations of total coliform are 5 CFU/100 mL, 1474 CFU/100 mL, and 1776 CFU/100 mL at Mojeongyo, Ogansugyo, and Muhakgyo, respectively. The average concentrations of fecal coliform were 28 CFU/100 mL, 47 CFU/100 mL in Ogansugyo, and Muhakgyo, respectively. The concentrations of other fecal indicator microorganisms including E. coli and Enterococcus sp. increased in downstream. When we characterized the microbial community, unique microbial community were discovered at different sampling sites. This study suggests that Cheonggyechoen stream is likely affected by non-point fecal sources and has unique microbial environment as the river flows downstream.

폐가스 처리용 바이오필터에 미생물 군집 분석 기법의 적용 (Application of Methodology for Microbial Community Analysis to Gas-Phase Biofilters)

  • 이은희;박현정;조윤성;류희욱;조경숙
    • Korean Chemical Engineering Research
    • /
    • 제48권2호
    • /
    • pp.147-156
    • /
    • 2010
  • 폐가스 처리용 바이오필터의 핵심 요소 기술은 생촉매(미생물), 담체, 설계 운전 기술 및 진단 관리 기술이다. 특히, 바이오필터의 성능은 부하 조건과 바이오필터 내 미생물 군집 구조에 의해 영향을 받는다. 지금까지 바이오필터의 미생물 연구는 대부분 배양법을 기초로 하여 수행되어 왔으나, 최근에 보다 신속하고 정확하게 미생물 군집을 분석할 수 있는 방법들이 제시되고 있다. 본 논문에서는 생리적, 생화학적 및 분자생물학적 미생물 군집 분석 방법과 이를 활용한 바이오필터의 미생물 군집 특성을 조사한 연구사례를 소개하고, 미생물 군집 분석법의 바이오필터에 적용 가능성에 대해 고찰하였다. Community-level physiological profile 방법은 시료 중에 포함된 종속영양미생물의 탄소기질 이용능력을 기반으로 군집 특성을 조사하는 것이며, Phospholipid fatty acid analysis는 미생물 세포막 지방산을 분석하여 군집 특성을 조사하는 방법이다. 환경시료로부터 직접 추출한 DNA를 활용하는 분자생물학적 분석법에는 "partial community DNA analysis"와 "whole community DNA analysis"가 있다. 전자의 방법은 PCR 과정에 의해 증폭시킨 염기서열을 분석하는 것으로 ribosomal operon 유전자가 가장 많이 활용되었다. 이 방법은 다시 PCR fragment cloning 및 genetic fingerprinting으로 구분되며, genetic fingerprinting 방법으로는 denaturing gradient gel electrophoresis, terminal-restriction fragment length polymorphism, ribosomal intergenic spacer analysis 및 random amplified polymorphic DNA 방법으로 세분화된다. 추출된 전체 군집의 DNA를 분석하는 방법에는 total genomic cross-DNA hybridization, 총 추출 DNA의 열 변성/재결합 방법 및 밀도구배를 이용하여 추출한 DNA를 분획화하는 방법 등이 있다.

Effects of Elevated Atmospheric $CO_2$ Concentrations on Soil Microorganisms

  • Freeman Chris;Kim Seon-Young;Lee Seung-Hoon;Kang Hojeong
    • Journal of Microbiology
    • /
    • 제42권4호
    • /
    • pp.267-277
    • /
    • 2004
  • Effects of elevated $CO_2$ on soil microorganisms are known to be mediated by various interactions with plants, for which such effects are relatively poorly documented. In this review, we summarize and syn­thesize results from studies assessing impacts of elevated $CO_2$ on soil ecosystems, focusing primarily on plants and a variety the of microbial processes. The processes considered include changes in microbial biomass of C and N, microbial number, respiration rates, organic matter decomposition, soil enzyme activities, microbial community composition, and functional groups of bacteria mediating trace gas emission such as methane and nitrous oxide. Elevated $CO_2$ in atmosphere may enhance certain micro­bial processes such as $CH_4$ emission from wetlands due to enhanced carbon supply from plants. How­ever, responses of extracellular enzyme activities and microbial community structure are still controversy, because interferences with other factors such as the types of plants, nutrient availabilitial in soil, soil types, analysis methods, and types of $CO_2$ fumigation systems are not fully understood.